GUÍA PARA EL DISEÑO,
CONSTRUCCIÓN Y OPERACIÓN DE
RELENOS SANITARIOS MANUALES

Una solución para la disposición final de residuos sólidos municipales en pequeñas poblaciones

Jorge Jaramillo
Universidad de Antioquia, Colombia

Centro Panamericano de Ingeniería Sanitaria y Ciencias del Ambiente
División de Salud y Ambiente
Organización Panamericana de la Salud
Oficina Sanitaria Panamericana, Oficina Regional de la Organización Mundial de la Salud

2002
CONTENIDO

<table>
<thead>
<tr>
<th>PRESENTACIÓN</th>
<th>xv</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. GENERALIDADES</td>
<td></td>
</tr>
<tr>
<td>1.1 El problema de los residuos sólidos municipales (RSM)</td>
<td>3</td>
</tr>
<tr>
<td>1.2 Características de los RSM</td>
<td>4</td>
</tr>
<tr>
<td>1.2.1 Producción de residuos sólidos</td>
<td>4</td>
</tr>
<tr>
<td>1.2.2 Producción per cápita de residuos sólidos</td>
<td>5</td>
</tr>
<tr>
<td>1.2.3 Producción de residuos e ingresos</td>
<td>5</td>
</tr>
<tr>
<td>1.2.4 Composición de los residuos sólidos</td>
<td>6</td>
</tr>
<tr>
<td>1.3 Efectos de la inadecuada gestión de residuos sólidos</td>
<td>6</td>
</tr>
<tr>
<td>1.3.1 Riesgos para la salud</td>
<td>6</td>
</tr>
<tr>
<td>1.3.1.1 Riesgos directos</td>
<td>7</td>
</tr>
<tr>
<td>1.3.1.2 Riesgos indirectos</td>
<td>8</td>
</tr>
<tr>
<td>1.3.2 Efectos en el ambiente</td>
<td>11</td>
</tr>
<tr>
<td>1.3.2.1 Contaminación del agua</td>
<td>12</td>
</tr>
<tr>
<td>1.3.2.2 Contaminación del suelo</td>
<td>13</td>
</tr>
<tr>
<td>1.3.2.3 Contaminación del aire</td>
<td>13</td>
</tr>
<tr>
<td>1.3.3 Riesgos para el desarrollo social</td>
<td>13</td>
</tr>
<tr>
<td>1.3.4 Riesgos para el desarrollo urbano</td>
<td>14</td>
</tr>
<tr>
<td>2. GESTIÓN INTEGRAL DE LOS RESIDUOS SÓLIDOS MUNICIPALES</td>
<td></td>
</tr>
<tr>
<td>2.1 El servicio de aseo urbano</td>
<td>19</td>
</tr>
<tr>
<td>2.1.1 Separación de residuos en la fuente</td>
<td>20</td>
</tr>
<tr>
<td>2.1.2 Almacenamiento y presentación</td>
<td>21</td>
</tr>
<tr>
<td>2.1.3 Recolección y transporte</td>
<td>21</td>
</tr>
<tr>
<td>2.1.4 Barrido y limpieza de vías y áreas públicas</td>
<td>22</td>
</tr>
<tr>
<td>2.1.5 Transferencia</td>
<td>22</td>
</tr>
<tr>
<td>2.1.6 Aprovechamiento</td>
<td>22</td>
</tr>
<tr>
<td>2.1.6.1 El reúso o reutilización</td>
<td>23</td>
</tr>
<tr>
<td>2.1.6.2 El reciclaje</td>
<td>23</td>
</tr>
<tr>
<td>2.1.6.3 Uso energético y constructivo</td>
<td>24</td>
</tr>
<tr>
<td>2.1.7 Tratamiento</td>
<td>24</td>
</tr>
<tr>
<td>2.1.7.1 Compost</td>
<td>24</td>
</tr>
</tbody>
</table>
2.1.7.2 Lombricultura .. 26
2.1.7.3 Incineración ... 26
2.1.8 Disposición final de los RSM ... 27
 2.1.8.1 Prácticas inadecuadas en la disposición final de los
 RSM .. 27
 2.1.8.2 El relleno sanitario ... 29
2.1.9 Costos comparativos de los sistemas de tratamiento y disposición
 final... 29
2.1.10 Características principales del servicio de aseo urbano 30
2.1.11 El aseo urbano y su relación con otros servicios de saneamiento
 básico .. 30

2.2 ¿Qué es la gestión integral de RSM? 31
 2.2.1 Gestión política y administrativa 31
 2.2.1.1 Responsabilidad de la autoridad local 31
 2.2.1.2 Sostenibilidad del servicio 32
 2.2.1.3 Legislación ambiental y normatividad 33
 2.2.2 Tendencias en la gestión de RSM 33
 2.2.3 Proceso de mejoramiento continuo en la disposición final de RSM 36
 2.2.4 Propuesta de un sistema integrado de tratamiento y disposición
 final... 36

3. EL RELLENO SANITARIO

3.1 ¿Qué es un botadero de basura a cielo abierto o basurero? 41
3.2 ¿Qué es un relleno sanitario? .. 42
 3.2.1 Tipos de relleno sanitario .. 42
 3.2.1.1 Relleno sanitario mecanizado 43
 3.2.1.2 Relleno sanitario semimecanizado 43
 3.2.1.3 Relleno sanitario manual 45
 3.2.2 Métodos de construcción de un relleno sanitario 45
 3.2.2.1 Método de trinchera o zanja 45
 3.2.2.2 Método de área ... 46
 3.2.2.3 Combinación de ambos métodos 48
 3.2.3 Ventajas y limitaciones de un relleno sanitario 48
 3.2.4 Uso futuro del relleno sanitario 48
3.3 Reacciones que se generan en un relleno sanitario 50
 3.3.1 Cambios físicos, químicos y biológicos 50
 3.3.2 Generación de líquidos y gases 51
 3.3.3 Hundimientos y asentamientos diferenciales 52
3.4 Principios básicos de un relleno sanitario 52
 3.4.1 Importancia de la cobertura 53
4. EL RELLENO SANITARIO MANUAL

4.1 ¿Por qué un relleno sanitario manual? .. 57
4.2 ¿Se justifica que una pequeña población tenga un tractor de orugas para operar un relleno sanitario? ... 58
4.3 Planificación ... 60
4.4 Selección del sitio .. 61
 4.4.1 Participación de las autoridades locales y de la población 61
 4.4.2 Aspectos técnicos .. 63
 4.4.3 Análisis preliminar .. 66
 4.4.4 Investigación de campo ... 66
4.5 Uso futuro del terreno .. 72
4.6 Cronograma de actividades ... 72
4.7 Proyecto básico ... 74
 4.7.1 Levantamiento topográfico .. 74
 4.7.2 Diseño del relleno sanitario ... 74
 4.7.3 Detalles del proyecto .. 75
4.8 Gráficos de los pasos necesarios para el diseño, construcción y operación .. 76
 4.8.1 Estudios de campo y diseño ... 76
 4.8.2 Preparación del terreno y construcción de las obras 77
 4.8.3 Operación y mantenimiento .. 78

5. DISEÑO DE UN RELLENO SANITARIO MANUAL

5.1 Información básica .. 81
 5.1.1 Aspectos demográficos ... 81
 5.1.2 Generación de RSM en las pequeñas poblaciones 82
 5.1.3 Características de los RSM en las pequeñas poblaciones 84
 5.1.4 Características del terreno ... 89
 5.1.5 Condiciones climatológicas ... 91
 5.1.6 Identificación de las normas vigentes ... 92
5.2 Cálculo del volumen necesario para el relleno sanitario 92
 5.2.1 Volumen de residuos sólidos .. 93
 5.2.2 Volumen del material de cobertura .. 93
 5.2.3 Volumen del relleno sanitario .. 93
5.3 Cálculo del área requerida ... 94
5.4 Diseño de taludes ... 95
 5.4.1 Obras de tierra ... 95
 5.4.2 Definición de taludes .. 95
 5.4.3 Diseño de taludes .. 96
5.5 Selección del método de relleno ... 98
5.5.1 Método de zanja o trinchera .. 102
5.5.2 Método de área .. 106

5.6 Cálculo de la capacidad volumétrica del sitio 106
5.6.1 Volúmenes de gran longitud (alrededor de un eje) 106
5.6.2 Volúmenes de gran extensión ... 109

5.7 Cálculo de la vida útil .. 111

5.8 Diseño del canal interceptor de aguas de escorrentía 112

5.9 Generación de lixiviado o percolado ... 114
5.9.1 Cálculo de la generación de lixiviado o percolado 114
5.9.2 Diseño del sistema de drenaje de lixiviado 116

5.10 Monitoreo de la calidad del agua ... 117
5.10.1 Localización de los pozos de monitoreo.......................... 118
5.10.2 Parámetros más representativos para el análisis de aguas y lixiviado ... 118

5.11 Cálculo de la celda diaria ... 119
5.11.1 Cantidad de RSM que se debe disponer 120
5.11.2 Volumen de la celda diaria .. 120
5.11.3 Dimensiones de la celda diaria 122

5.12 Cálculo de la mano de obra ... 122
5.13 Proyecto paisajístico ... 125
5.14 Análisis de impactos socioambientales 125

6. PREPARACIÓN DEL TERRENO Y CONSTRUCCIÓN DE LA INFRAESTRUCTURA

6.1 Preparación del terreno ... 131
6.1.1 Limpieza y desmonte .. 131
6.1.2 Tratamiento del suelo de soporte .. 131
6.1.3 Cortes y conformación de taludes del terreno 134
6.1.4 Requerimientos de infraestructura y equipamiento de un relleno sanitario ... 135

6.2 Infraestructura periférica ... 137
6.2.1 Vía de acceso .. 137
6.2.2 Drenaje perimetral de aguas de lluvias 138

6.3 Infraestructura del relleno .. 138
6.3.1 Drenaje y manejo del lixiviado ... 138
6.3.2 Tratamiento del lixiviado ... 144
6.3.3 Drenaje de gases .. 144
6.3.4 Pozos de monitoreo ... 148
6.3.5 Caminos y drenaje pluvial internos 149

6.4 Construcciones auxiliares .. 149
6.4.1 Cerco perimetral ... 150
6.4.2 Área de amortiguamiento y protección ... 150
6.4.3 Caseta de control ... 151
6.4.4 Instalaciones sanitarias ... 153
6.4.5 Patio de maniobras ... 153
6.4.6 Cartel de presentación ... 153

7. CONSTRUCCIÓN, OPERACIÓN Y MANTENIMIENTO

7.1 Construcción ... 157
 7.1.1 Método constructivo .. 157
 7.1.2 Plan de construcción del relleno .. 160
 7.1.3 Construcción de terraplenes ... 165
 7.1.4 Construcción de las celdas ... 167

7.2 Operación ... 171
 7.2.1 Plan de operaciones ... 171
 7.2.2 Personal (mano de obra) ... 183
 7.2.3 Supervisión .. 183
 7.2.4 Herramientas de trabajo ... 183
 7.2.5 Implementos de protección personal ... 186
 7.2.6 Operación en época de lluvias .. 186

7.3 Mantenimiento ... 190
 7.3.1 Herramientas .. 190
 7.3.2 Infraestructura externa y del relleno .. 190

8. CLAUSURA DEL BOTADERO MUNICIPAL

8.1 Divulgación de la clausura .. 197
8.2 Pasos y acciones para la clausura del botadero 198
 8.2.1 Segregadores de basura .. 198
 8.2.2 Acciones de carácter correctivo .. 198
8.3 Uso futuro del botadero clausurado ... 202

9. ADMINISTRACIÓN Y CONTROL

9.1 Administración ... 205
 9.1.1 Recursos .. 205
 9.1.2 Supervisión ... 205
 9.1.3 Salud y seguridad de los trabajadores ... 206
 9.1.4 Indicadores de productividad .. 208

9.2 Controles del relleno sanitario ... 208
 9.2.1 Control de la construcción ... 209
 9.2.2 Control de operaciones ... 210
9.2.3 Control de costos ... 211
9.2.4 Control del ambiente .. 212
9.3 Análisis de costos ... 215
 9.3.1 Costos de inversión .. 215
 9.3.2 Costos de operación y mantenimiento 216
 9.3.3 Costos finales de clausura del relleno sanitario 216
9.4 Preparación del presupuesto .. 216
 9.4.1 Estimación de los costos unitarios de inversión 219
 9.4.2 Estimación de los costos de operación 221
 9.4.2.1 Costos anuales de la mano de obra 221
 9.4.2.2 Herramientas y elementos de protección 222
 9.4.2.3 Drenajes, caminos, maquinarias y otros 222
 9.4.2.4 Costos unitarios de operación 223
 9.4.3 Costos totales y tarifas ... 223
 9.4.3.1 Costos totales .. 223
 9.4.3.2 Tarifas ... 223
 9.4.4 Cobranza ... 225
 9.4.5 Incumplimiento en el pago de la tarifa 225

GLOSARIO

APÉNDICES

Apéndice A. Prueba de percolación .. 241
Apéndice B. Análisis simplificado del suelo 245
Apéndice C. Nociones de dibujo y topografía 253
Apéndice D. Diseño de un relleno sanitario manual. Ejemplos de cálculo 257
Apéndice E. Cálculo de la capacidad volumétrica del sitio 279
Apéndice F. Problemas ocasionados por el manejo inapropiado de los residuos sólidos. Reportes de prensa 285
<table>
<thead>
<tr>
<th>Figura</th>
<th>Descripción</th>
<th>Página</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>El ciclo vital de la mosca y su importancia en la transmisión de enfermedades</td>
<td>10</td>
</tr>
<tr>
<td>1.2</td>
<td>Consecuencias de la descarga incontrolada de basura</td>
<td>12</td>
</tr>
<tr>
<td>2.1</td>
<td>Gestión integral de los RSM</td>
<td>19</td>
</tr>
<tr>
<td>2.2</td>
<td>Recipientes para la separación y almacenamiento de residuos sólidos domésticos</td>
<td>20</td>
</tr>
<tr>
<td>2.3</td>
<td>Procesamiento manual de la materia orgánica en pilas para la producción de compost</td>
<td>25</td>
</tr>
<tr>
<td>2.4</td>
<td>Prioridad en la gestión de RSM desde el punto de vista de la salud pública y la contaminación</td>
<td>35</td>
</tr>
<tr>
<td>2.5</td>
<td>Evolución en el mejoramiento de la disposición final de RSM</td>
<td>36</td>
</tr>
<tr>
<td>2.6</td>
<td>Vista en planta de un sistema integrado de tratamiento y disposición final de RSM</td>
<td>37</td>
</tr>
<tr>
<td>3.1</td>
<td>Abandono de la basura en un botadero a cielo abierto</td>
<td>41</td>
</tr>
<tr>
<td>3.2</td>
<td>Relleno sanitario operado con equipo pesado</td>
<td>42</td>
</tr>
<tr>
<td>3.3</td>
<td>Tractor agrícola adaptado para las operaciones del relleno sanitario</td>
<td>44</td>
</tr>
<tr>
<td>3.4</td>
<td>Remolque enganchado a un tractor agrícola para la recolección de basura</td>
<td>44</td>
</tr>
<tr>
<td>3.5</td>
<td>Método de trinchera para construir un relleno sanitario</td>
<td>46</td>
</tr>
<tr>
<td>3.6</td>
<td>Método de área para construir un relleno sanitario</td>
<td>46</td>
</tr>
<tr>
<td>3.7</td>
<td>Método de área para rellenar depresiones</td>
<td>47</td>
</tr>
<tr>
<td>3.8</td>
<td>Combinación de ambos métodos para construir un relleno sanitario</td>
<td>48</td>
</tr>
<tr>
<td>4.1</td>
<td>Presentación del proyecto a las autoridades locales</td>
<td>62</td>
</tr>
<tr>
<td>4.2</td>
<td>Localización del relleno sanitario cerca del área urbana</td>
<td>64</td>
</tr>
<tr>
<td>4.3</td>
<td>Localización del relleno sanitario cerca de una vía principal</td>
<td>67</td>
</tr>
<tr>
<td>4.4</td>
<td>Dirección predominante del viento</td>
<td>71</td>
</tr>
<tr>
<td>4.5</td>
<td>Uso futuro del relleno sanitario manual</td>
<td>72</td>
</tr>
<tr>
<td>4.6</td>
<td>Estudios de campo y diseño</td>
<td>76</td>
</tr>
<tr>
<td>4.7</td>
<td>Preparación del terreno y construcción de obras</td>
<td>77</td>
</tr>
<tr>
<td>4.8</td>
<td>Operación y mantenimiento</td>
<td>78</td>
</tr>
</tbody>
</table>
5.1 Relación entre el tipo de suelo, el coeficiente de permeabilidad y su aceptación para drenaje y relleno sanitario .. 90
5.2 Condiciones climatológicas e hidrológicas favorables 91
5.3 Definición de taludes .. 96
5.4 Taludes en corte ... 98
5.5 Conformación del terreno original.. 99
5.6 Configuración inicial del suelo de soporte .. 100
5.7 Configuración final del relleno sanitario .. 101
5.8 Localización y proceso de excavación de las zanjas en el tiempo y combinación con el método de área ... 102
5.9 Distribución de zanjas en el terreno ... 103
5.10 Volumen longitudinal alrededor de un eje .. 107
5.11 Prismoides ... 108
5.12 Volumen de un zanjón ... 109
5.13 Planta y sección de un terreno .. 111
5.14 Drenaje perimetral para desviar las aguas de lluvia y red para lixiviado 112
5.15 Tipos de sección de canales de drenaje de aguas de escorrentía 113
5.16 Detalle de la sección transversal del canal trapezoidal......................... 113
5.17 Localización y características de los pozos para el monitoreo de agua .. 118

6.1 Limpieza y desmonte del terreno ... 131
6.2 Pendiente de la superficie del terreno o base del relleno 132
6.3 Movimiento de tierras para la preparación del sitio 133
6.4 Drenaje para terrenos con alto nivel freático 134
6.5 Cortes de los taludes y del suelo de soporte (método de área y trincher) 135
6.6 Camino de acceso al relleno sanitario manual 137
6.7 Canal perimetral para el desvío de las aguas de escorrentía superficial. 138
6.8 Distribución del sistema de drenaje del lixiviado 139
6.9 Detalles de las zanjas para el almacenamiento del lixiviado 140
6.10 Zanja de lixiviado para recibir las llantas usadas 141
6.11 Red de zanjas externas para el almacenamiento del lixiviado 142
6.12 Cubierta o techo ligero para evitar el ingreso del agua de lluvia al relleno 143
6.13 Interconexión de los sistemas de drenaje de gases y lixiviado 145
6.14 Construcción del drenaje de gases o chimeneas................................. 145
6.15 Distribución de las chimeneas en el relleno .. 146
6.16 Caperuza metálica y mechón para la protección del drenaje de gases y encendido de la chimenea ... 146
6.17 Detalles de construcción del drenaje de gases 147
6.18 Propuestas para la estructura de salida final del drenaje de gases del relleno ... 147
6.19 Proceso constructivo de un pozo de monitoreo de aguas 148
6.20 Encerramiento perimetral... 149
Lista de figuras

6.21 Siembra de árboles en la zona de retiro perimetral 150
6.22 Caseta de control y almacenamiento de materiales 151
6.23 Instalaciones sanitarias .. 152
6.24 Cartel de presentación del relleno sanitario 153

7.1 Localización de las celdas y avance de la construcción del relleno 158
7.2 Método de trinchera e inicio del llenado ... 159
7.3 Método de área en una hondonada natural 160
7.4 Plan de construcción para un sitio plano .. 161
7.5 Plan de construcción para una cantera profunda 162
7.6 Formación de los niveles de relleno en la cantera 163
7.7 Plan de manejo del terreno para la construcción del relleno sanitario manual mediante el método de trinchera ... 164
7.8 Relleno sanitario terminado y construido mediante la combinación de los métodos de trinchera y área ... 165
7.9 Secuencia de la construcción de terraplenes para el llenado del terreno 166
7.10 Tipos de secuencia en la construcción de terraplenes 167
7.11 Celda diaria típica ... 168
7.12 Formas de representar la pendiente de un terreno 169
7.13 Terreno preparado para la construcción del relleno 172
7.14 Primera descarga de RSM para la conformación de la celda diaria 173
7.15 Esparcimiento de los RSM en el área limitada para la celda diaria 173
7.16 Compactación de los RSM con un pisón de mano 174
7.17 Extracción de la tierra para cubrir los RSM 174
7.18 Cubrimiento de los RSM con tierra .. 175
7.19 Compactación de la primera celda terminada con rodillo y pisón de mano 175
7.20 Construcción del drenaje de gases .. 176
7.21 Construcción de la segunda celda apoyada a un lado de la primera ... 176
7.22 Construcción del primer terraplén o terraza del relleno 177
7.23 Configuración final del relleno sanitario .. 177
7.24 Proceso de llenado de una zanja desde un extremo 178
7.25 Descarga de los RSM y conformación de la primera celda 178
7.26 Ingreso del vehículo por encima de la celda y descarga de la basura ... 179
7.27 Conformación de la capa superior de celdas 179
7.28 Zanja terminada ... 179
7.29 Descarga de los RSM a un costado de la zanja 180
7.30 Descenso y nivelación de los RSM en la zanja 180
7.31 Acarreo de tierra y cubrimiento de la basura 181
7.32 Compactación manual de los RSM en la zanja 181
7.33 Avance del llenado de la primera zanja .. 182
7.34 Descarga de la basura en el costado opuesto de la zanja de almacenamiento de la tierra de cobertura 182
7.35 Secuencia del llenado de las dos primeras zanjas .. 182
7.36 Herramientas de trabajo para el relleno sanitario manual 184
7.37 Carretilla de llanta neumática de 120 litros ... 185
7.38 Barril de 55 galones acondicionado como rodillo compactador 185
7.39 Movimiento de tierra y conformación de la celda diaria 186
7.40 Implementos de protección de los trabajadores ... 187
7.41 Reserva de áreas y construcción en altura de las celdas para la operación en periodos de lluvias ... 188
7.42 Detalles para armar el módulo del “entarimado” ... 189
7.43 Camino artificial para el ingreso de los residuos al frente de trabajo 190
7.44 Recolección del material disperso en la superficie del relleno y alrededores .. 191
7.45 Siembra de vegetación en la superficie y taludes de los terraplenes terminados ... 192

8.1 Exterminio de roedores ... 199
8.2 Pasos para el recubrimiento final de un botadero de basura 200
8.3 Contención y rehabilitación de un botadero de basura 200
8.4 Clausura de un botadero de basura ... 201

9.1 Estacas en el terreno para controlar la construcción de los terraplenes 210
9.2 Control de incendios .. 212
9.3 Control de vectores de interés sanitario .. 213
9.4 Controles para la estabilidad de taludes con llantas de automotores 214
9.5 Identificación de fallas del talud.. 215

Apéndices

A.1 Ensayo de percolación ... 242
B.1 Preparación del suelo para un ensayo de textura 248
B.2 Determinación de la textura de un suelo con la mano.
 Apariencia de varias texturas ... 249
C.1 Alineamiento ... 254
C.2 Trazo de una perpendicular ... 255
D.1 Configuración y distribución de zanjas en el terreno 263
D.2 Configuración del terreno en el tramo de una carretera abandonada ... 264
D.3 Relleno sanitario en un zanjón .. 266
D.4 Terraplén con la forma de un prisma vertical truncado 268
D.5 Planta y perfiles del terreno y relleno para el cálculo del volumen a partir de las curvas de nivel o planos horizontales 271
E.1 Levantamiento de un terreno con cinta métrica 280
E.2 Cálculo del área por el método gráfico .. 283
<table>
<thead>
<tr>
<th>Cuadro</th>
<th>Descripción</th>
<th>Página</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>Actividades generadoras de residuos sólidos en la Región de América Latina y el Caribe</td>
<td>4</td>
</tr>
<tr>
<td>1.2</td>
<td>Índices de producción de residuos sólidos e ingresos</td>
<td>5</td>
</tr>
<tr>
<td>1.3</td>
<td>Composición de los RSM</td>
<td>7</td>
</tr>
<tr>
<td>1.4</td>
<td>Enfermedades relacionadas con RSM transmitidas por vectores</td>
<td>9</td>
</tr>
<tr>
<td>2.1</td>
<td>Proceso de desarrollo de métodos de disposición final en ciudades de desarrollo</td>
<td>28</td>
</tr>
<tr>
<td>2.2</td>
<td>Costos comparativos de tratamiento y disposición final</td>
<td>29</td>
</tr>
<tr>
<td>2.3</td>
<td>Características principales del servicio de aseo urbano</td>
<td>30</td>
</tr>
<tr>
<td>2.4</td>
<td>Impacto acumulado de los componentes de saneamiento básico</td>
<td>31</td>
</tr>
<tr>
<td>2.5</td>
<td>Tendencias en la gestión integral de los RSM</td>
<td>34</td>
</tr>
<tr>
<td>3.1</td>
<td>Ventajas y limitaciones del relleno sanitario</td>
<td>49</td>
</tr>
<tr>
<td>4.1</td>
<td>Criterios para el ejemplo de cálculo del área requerida para un relleno sanitario manual</td>
<td>69</td>
</tr>
<tr>
<td>4.2</td>
<td>Población, generación de RSM, área requerida y vida útil del relleno sanitario</td>
<td>69</td>
</tr>
<tr>
<td>4.3</td>
<td>Cronograma de actividades para el proceso de implantación de un relleno sanitario</td>
<td>73</td>
</tr>
<tr>
<td>5.1</td>
<td>Volumen y área requerida para el relleno sanitario</td>
<td>85</td>
</tr>
<tr>
<td>5.2</td>
<td>Proyección de la producción y procedencia de los desechos sólidos municipales (t/año)</td>
<td>87</td>
</tr>
<tr>
<td>5.3</td>
<td>Densidad de diseño de la celda diaria y del relleno sanitario manual</td>
<td>88</td>
</tr>
<tr>
<td>5.4</td>
<td>Taludes recomendados en corte</td>
<td>97</td>
</tr>
<tr>
<td>5.5</td>
<td>Parámetros para medir la calidad del agua y lixiviado</td>
<td>119</td>
</tr>
<tr>
<td>5.6</td>
<td>Capacidad volumétrica del sitio para el relleno sanitario</td>
<td>121</td>
</tr>
<tr>
<td>5.7</td>
<td>Guía de cálculo para estimar el número de trabajadores</td>
<td>123</td>
</tr>
<tr>
<td>5.8</td>
<td>Rendimientos reportados de otras experiencias</td>
<td>124</td>
</tr>
<tr>
<td>5.9</td>
<td>Requerimientos probables de mano de obra</td>
<td>124</td>
</tr>
<tr>
<td>5.10</td>
<td>Aspectos socioambientales asociados a un proyecto de relleno sanitario manual</td>
<td>127</td>
</tr>
</tbody>
</table>
Cuadro 6.1 Infraestructura y equipamiento básico de un relleno sanitario 136
Cuadro 7.1 Cobertura de la celda diaria típica y del relleno sanitario 170
Cuadro 9.1 Algunos indicadores de gestión de RSM y disposición final 209
Cuadro 9.2 Costos de inversión ... 218
Cuadro 9.3 Costo de apertura del relleno y de clausura del basurero........... 219
Presentación

Es un hecho cada vez más claro en América Latina y el Caribe el impacto negativo de la inadecuada disposición final de residuos en el ambiente y en la salud. La población ha tomado conciencia de la importancia de este problema y, en distintas localidades, ha demandado una acción más decidida de las instituciones públicas para solucionarlo. En función de estos justos reclamos, las autoridades gubernamentales han empezado a tomar acciones con la finalidad de atenuar los efectos negativos de esta mala práctica.

Las alternativas que se vienen ofreciendo para resolver este problema parten hoy de un enfoque de gestión integral y ponen mucho énfasis en la sostenibilidad de las soluciones. Al mismo tiempo, tratan de estar enmarcadas dentro de los instrumentos legales apropiados según la legislación de cada país. Hay que resaltar que en la mayor parte de naciones de la Región ya se está exigiendo la implantación de rellenos sanitarios como la mejor solución para la disposición final de residuos.

Al lado de estos avances, hay que mencionar que el problema de la disposición final de residuos adopta características particulares en localidades pequeñas y en zonas rurales, debido a varios factores: la falta de recursos, por el subsidio casi generalizado del servicio de limpieza; la ausencia de información sobre las consecuencias negativas de los botaderos; el desconocimiento de soluciones conjuntas, que reducen los costos de implementación y operación de los rellenos manuales gracias a la aplicación de economías de escala; la falta de conocimiento de la tecnología apropiada para disponer los residuos sin que ello signifique incurrir en costos mayores de inversión y operación; en general, a la ausencia de conocimiento acerca de cómo enfrentar el problema de la disposición final inadecuada de residuos.

De allí la necesidad de una guía actualizada que abarque todas las etapas involucradas en la puesta en marcha de un relleno sanitario manual para pequeñas poblaciones. De allí también la decisión de revisar nuestra anterior publicación sobre el tema. Residuos sólidos municipales. Guía para el diseño, construcción y operación de rellenos sanitarios manuales. El solo hecho de que esta guía haya tenido cuatro reimpresiones en seis años es un indicador de la importancia que está cobrando el tema en la Región.
Esta versión incorpora nuevos temas que ayudarán a las pequeñas poblaciones de la Región a desarrollar una gestión integral de residuos, a administrar y controlar los rellenos y a efectuar análisis de costos para garantizar la sostenibilidad de estas acciones. El documento resultará, pues, de gran utilidad para mejorar las condiciones de ambiente y de salud de un amplio sector de poblaciones de América Latina y el Caribe.

El autor del documento original es el Ing. Jorge Jaramillo, consultor internacional y profesor principal de la Universidad de Antioquia, Colombia. Para enriquecer esta reedición, él incorporó comentarios de diversos consultores de otros países que trabajan en este campo. El área de Manejo de Residuos Sólidos de la OPS/CEPIS también colaboró en la elaboración del texto y revisó la versión final del documento. Se reconoce la participación en esta tarea del Ing. Alvaro Cantanhede, Consultor Regional de Manejo de Residuos, y del Ing. Leandro Sandoval, Asesor en Residuos Sólidos Urbanos.

Finalmente, es importante mencionar el apoyo financiero brindado por las Oficinas de Representación de la OPS/OMS de México, Paraguay, Venezuela y Perú, sin el cual no hubiera sido posible esta nueva edición.
1. GENERALIDADES
Guía para el diseño, construcción y operación de rellenos sanitarios manuales
1.1 **El problema de los residuos sólidos municipales (RSM)**

Los residuos sólidos municipales (RSM) son aquellos que provienen de las actividades domésticas, comerciales, industriales (pequeña industria y artesanía), institucionales (administración pública, establecimientos de educación, etc.), de mercados, y los resultantes del barrido y limpieza de vías y áreas públicas de un conglomerado urbano, y cuya gestión está a cargo de las autoridades municipales.

La gestión de residuos sólidos, especialmente lo relacionado con la disposición final, es una tarea compleja que se ha convertido en un problema común en los países en vías de desarrollo. Ello se refleja en la falta de limpieza de las áreas públicas, la recuperación de residuos en las calles, el incremento de actividades informales, la descarga de residuos en cursos de agua o su abandono en botaderos a cielo abierto y la presencia de personas, de ambos sexos y de todas las edades, en estos sitios en condiciones infrahumanas, expuestas a toda clase de enfermedades y accidentes.

El problema de los RSM está presente en la mayoría de las ciudades y pequeñas poblaciones por su inadecuada gestión y tiende a agravarse en determinadas regiones como consecuencia de múltiples factores, entre ellos, el acelerado crecimiento de la población y su concentración en áreas urbanas, el desarrollo industrial, los cambios de hábitos de consumo, el uso generalizado de envases y empaques y materiales desechables, que aumentan considerablemente la cantidad de residuos.

Este panorama se agrava debido a la crisis económica y a la debilidad institucional que obligan a reducir el gasto público y a mantener tarifas bajas. Además, la poca educación sanitaria y la escasa participación ciudadana generan una gran resistencia al momento de pagar los costos que implican el manejo y la disposición de residuos, en detrimento de la calidad del servicio de aseo urbano, lo que constituye otra de las causas que agravan el problema. Todo ello compromete la salud pública, aumenta la contaminación de los recursos naturales y el ambiente de nuestro territorio y deteriora la calidad de vida de la población.

El desarrollo de cualquier asentamiento humano está acompañado siempre de una mayor producción de residuos que, al mezclarse, no solo pierden o disminuyen su potencial valor comercial, sino que también afectan la salud de la comunidad y degradan su entorno. En tal sentido, se hace manifiesta la necesidad de buscar soluciones adecuadas para su manejo y disposición final.

Ante esta situación, es imprescindible que los municipios y los demás organismos afronten racionalmente y con valentía la gestión de los residuos sólidos, teniendo en cuenta, entre otras consideraciones: el nivel de educación ambiental de la comunidad y su capacidad de pago del servicio de aseo urbano; las implicaciones que acarrea la mezcla de...
residuos; el valor económico de algunos de estos y su probable mercado; la complementariedad de los sistemas de tratamiento y disposición final; y el costo inherente a los procesos que suponen su recolección, transporte, tratamiento y eliminación.

1.2 Características de los RSM

1.2.1 Producción de residuos sólidos

Los residuos sólidos se generan en todas aquellas actividades en las que los materiales son considerados por su propietario o poseedor como desechos sin ningún valor adicional y pueden ser abandonados o recogidos para su tratamiento o disposición final. El cuadro 1.1 ilustra este punto.

<table>
<thead>
<tr>
<th>Actividades generadoras</th>
<th>Componentes</th>
<th>% del total de RSM<sup>a</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td>Residencial y domiciliario</td>
<td>Desperdicios de cocina, papeles y cartón, plásticos, vidrio, metales, textiles, residuos de jardín, tierra, etc.</td>
<td>50 a 75</td>
</tr>
<tr>
<td>Comercial</td>
<td>Papel, cartón, plásticos, madera, residuos de comida, vidrio, metales, residuos especiales y peligrosos</td>
<td>10 a 20</td>
</tr>
<tr>
<td>Institucional</td>
<td>Semejantes al comercial</td>
<td>5 a 15</td>
</tr>
<tr>
<td>Industria (pequeña industria y artesanía)</td>
<td>Residuos de procesos industriales, materiales de chatarra, etc. Incluye residuos de comida, cenizas, demolición y construcción, especiales y peligrosos.</td>
<td>5 a 30</td>
</tr>
<tr>
<td>Barrido de vías y áreas públicas</td>
<td>Residuos que arrojan los peatones, tierra, hojas, excrementos, etc.</td>
<td>10 a 20</td>
</tr>
</tbody>
</table>

1.2.2 Producción per cápita de residuos sólidos

La producción de residuos sólidos se puede medir en valores unitarios como kilogramos por habitante por día, kilogramos por vivienda por día, kilogramos por cuadra por día, kilogramos por tonelada de cosecha o kilogramos por número de animales por día.

La producción de residuos sólidos domiciliarios en la Región varía de 0,3 a 1,0 kg/hab/día. Cuando a este tipo de residuos se agregan otros como los producidos por el comercio, las diversas instituciones, la pequeña industria, el barrio y otros, esta cantidad se incrementa entre 25 y 50%, o sea, que la producción diaria es de 0,5 a 1,2 kg/hab/día. En los países industrializados, en cambio, se tienen indicadores de producción por habitante mayores de un kilogramo por día, como se puede ver en el cuadro 1.2.

1.2.3 Producción de residuos e ingresos

A pesar de que los índices de producción de residuos en los países en desarrollo son más bajos que en los industrializados, estos índices no son proporcionalmente más bajos en relación con los ingresos. Sin embargo, el nivel de ingresos sí es considerablemente menor que el de los países industrializados, como se deduce del cuadro 1.2.

<table>
<thead>
<tr>
<th>Cuadro 1.2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Índices de producción de residuos sólidos e ingresosa</td>
</tr>
<tr>
<td>País</td>
</tr>
<tr>
<td>Producción per cápita kg/hab/día</td>
</tr>
<tr>
<td>t/hab/año</td>
</tr>
<tr>
<td>Ingresos promedio (US$ de 1988)</td>
</tr>
<tr>
<td>US$/hab/año</td>
</tr>
</tbody>
</table>

En América Latina, con excepción de Argentina que en 1999 tenía un ingreso per cápita (IPC) de US$11.940 por año, el resto tiene ingresos per cápita menores de US$6.000 por año; sin embargo, los de países como Canadá, Estados Unidos, Alemania y Japón fluctúan entre US$20.000 y US$39.000 anuales.
La producción per cápita de residuos sólidos no solo varía de un país a otro, sino también de una población a otra e, incluso, de un estrato socioeconómico a otro dentro de una misma ciudad. Lo anterior confirma que el grado de desarrollo del país, el ingreso per cápita y el tamaño de las ciudades son factores determinantes para que se incremente su producción.

1.2.4 Composición de los residuos sólidos

Los RSM son aquellos subproductos originados en las actividades que se realizan en la vivienda, la oficina, el comercio y la industria (lo que se conoce comúnmente como basura) y están compuestos de residuos orgánicos, tales como sobras de comida, hojas y restos de jardín, papel, cartón, madera y, en general, materiales biodegradables; e inorgánicos, a saber, vidrio, plástico, metales, objetos de caucho, material inerte y otros.

En términos generales, los resultados de estudios latinoamericanos sobre composición de los RSM coinciden en destacar un alto porcentaje de materia orgánica putrescible (entre 50 y 80%), contenidos moderados de papel y cartón (entre 8 y 18%), plástico y caucho (entre 3 y 14%) y vidrio y cerámica (entre 3 y 8%).

El cuadro 1.3 muestra la composición de los residuos sólidos como otro de los factores importantes que deben ser tenidos en cuenta en la gestión, especialmente para decidir las posibilidades de recuperación, sistemas de tratamiento y disposición más apropiados.

También se puede apreciar que la calidad de los residuos sólidos de los países en vías de desarrollo es bastante pobre comparada con la de los industrializados, lo que es importante cuando se desea fomentar programas de tratamiento y reciclaje. En el caso de los países de América Latina y el Caribe (ALC), los RSM tienen un mayor contenido de materia orgánica, una humedad que varía de 35 a 55% y un mayor peso específico, que alcanza valores de 125 a 250 kg/m³, cuando se miden sueltos.

1.3 Efectos de la inadecuada gestión de residuos sólidos

1.3.1 Riesgos para la salud

La importancia de los residuos sólidos como causa directa de enfermedades no está bien determinada; sin embargo, se les atribuye una incidencia en la transmisión de algunas de ellas, al lado de otros factores, principalmente por vías indirectas.

Para comprender con mayor claridad sus efectos en la salud de las personas, es necesario distinguir entre los riesgos directos y los riesgos indirectos que provocan.
1.3.1.1 Riesgos directos

Son los ocasionados por el contacto directo con la basura, por la costumbre de la población de mezclar los residuos con materiales peligrosos tales como: vidrios rotos, metales, jeringas, hojas de afeitar, excrementos de origen humano o animal, e incluso con residuos infecciosos de establecimientos hospitalarios y sustancias de la industria, los cuales pueden causar lesiones a los operarios de recolección de basura.

El servicio de recolección de basura es considerado uno de los trabajos más arduos: se realiza en movimiento, levantando objetos pesados y, a veces, por la noche o en las primeras horas de la mañana; condiciones estas que lo vuelven de alto riesgo y hacen que la morbilidad pueda llegar a ser alta. Las condiciones anteriores se tornan más críticas si las jornadas son largas y si, además, no se aplican medidas

Cuadro 1.3
Composición de los RSM*

<table>
<thead>
<tr>
<th>Composición (%) peso húmedo</th>
<th>Países</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Bajos ingresos</td>
</tr>
<tr>
<td>Vegetales y materiales putrescibles</td>
<td>40 a 85</td>
</tr>
<tr>
<td>Papel y cartón</td>
<td>1 a 10</td>
</tr>
<tr>
<td>Plásticos</td>
<td>1 a 5</td>
</tr>
<tr>
<td>Metales</td>
<td>1 a 5</td>
</tr>
<tr>
<td>Vidrio</td>
<td>1 a 10</td>
</tr>
<tr>
<td>Caúcho y cuero</td>
<td>1 a 5</td>
</tr>
<tr>
<td>Material inerte (cenizas, tierra, arena)</td>
<td>1 a 40</td>
</tr>
</tbody>
</table>

Otras características

<table>
<thead>
<tr>
<th></th>
<th>Bajos ingresos</th>
<th>Medianos ingresos</th>
<th>Industrializados</th>
</tr>
</thead>
<tbody>
<tr>
<td>Contenido de humedad %</td>
<td>40 a 80</td>
<td>40 a 60</td>
<td>20 a 30</td>
</tr>
<tr>
<td>Densidad kg/m³</td>
<td>250 a 500</td>
<td>170 a 330</td>
<td>100 a 170</td>
</tr>
<tr>
<td>Poder calorífico inferior</td>
<td>800 a 1.100</td>
<td>1.100 a 1.300</td>
<td>1.500 a 2.700</td>
</tr>
</tbody>
</table>

preventivas o no se usan artículos de protección necesarios. Asimismo, los vehículos de recolección no siempre ofrecen las mejores condiciones: en muchos casos, los operarios deben realizar sus actividades en presencia continua de gases y partículas emanadas por los propios equipos, lo que produce irritación en los ojos y afecciones respiratorias; por otra parte, estas personas están expuestas a mayores riesgos de accidentes de tránsito, magulladuras, etc.

En peor situación se encuentran los segregadores de basura, cuya actividad de separación y selección de materiales se realiza en condiciones infrahumanas y sin la más mínima protección ni seguridad social. En general, por su bajo nivel socioeconómico, carecen de los servicios básicos de agua, alcantarillado y electricidad y se encuentran sometidos a malas condiciones alimentarias, lo que se refleja en un estado de desnutrición crónica.

Los segregadores de basura suelen tener más problemas gastrointestinales de origen parasitario, bacteriano o viral que el resto de la población. Además, sufren un mayor número de lesiones que los trabajadores de la industria; estas lesiones se presentan en las manos, pies y espalda, y pueden consistir en cortes, heridas, golpes, y hernias, además de enfermedades de la piel, dientes y ojos e infecciones respiratorias, etc. Frequentemente, estos problemas son causantes de incapacidad.

Los mismos segregadores de basura se transforman en vectores sanitarios y potenciales generadores de problemas de salud entre las personas con las cuales conviven y están en contacto.

1.3.1.2 Riesgos indirectos

El riesgo indirecto más importante se refiere a la *proliferación de animales, portadores de microorganismos que transmiten enfermedades a toda la población*, conocidos como vectores. Estos vectores son, entre otros, moscas, mosquitos, ratas y cucarachas, que, además de alimento, encuentran en los residuos sólidos un ambiente favorable para su reproducción, lo que se convierte en un caldo de cultivo para la transmisión de enfermedades, desde simples diarreas hasta cuadros severos de tifoidea u otras dolencias de mayor gravedad. Ejemplos de este tipo de vectores se presentan en el cuadro 1.4.

Las moscas. Su ciclo de reproducción depende de la temperatura ambiental. Pueden llegar a su estado adulto en un lapso de entre 8 y 20 días y su radio de acción puede ser de 10 km en 24 horas. Su medio de reproducción está en los excrementos húmedos de humanos y animales (criaderos, letrinas mal construidas, fecalismo al aire libre, lodos de tratamiento, basuras, etc.) (figura 1.1). Se estima que un kilogramo de materia orgánica permite la reproducción de 70.000 moscas.
Las condiciones de insalubridad resultantes del manejo inadecuado de los RSM siguen en importancia a aquellas causadas por las excretas humanas y amenazan peligrosamente la salud pública.

Cuadro 1.4
Enfermedades relacionadas con RSM transmitidas por vectores

<table>
<thead>
<tr>
<th>Vectores</th>
<th>Formas de transmisión</th>
<th>Principales enfermedades</th>
</tr>
</thead>
</table>
| ? Ratas | ? Mordisco, orina y heces
? Pulgas | ? Peste bubónica
? Tifus murino
? Leptospirosis |
| ? Moscas | ? Vía mecánica
(alas, patas y cuerpo) | ? Fiebre tifoidea
? Salmonellosis
? Cólera
? Amibiasis
? Disentería
? Giardiasis |
| ? Mosquitos | ? Picadura del mosquito hembra | ? Malaria
? Leishmaniasis
? Fiebre amarilla
? Dengue
? Filariasis |
| ? Cucarachas | ? Vía mecánica
(alas, patas y cuerpo) | ? Fiebre tifoidea
? Heces
? Cólera
? Giardiasis |
| ? Cerdos | ? Ingestión de carne contaminada | ? Cisticercosis
? Toxoplasmosis
? Triquinosis
? Teniasis |
| ? Aves | ? Heces | ? Toxoplasmosis |

La basura es la fuente principal de reproducción de la mosca doméstica, que transmite enfermedades y causa la muerte de millones de personas en todo el mundo. Por tanto, el elemento clave para el control de la mosca doméstica es un buen almacenamiento, seguido de la recolección y disposición sanitaria final de la basura en rellenos sanitarios.

Las cucarachas. Existen desde hace 350 millones de años y, dada su extraordinaria resistencia a la mayoría de los insecticidas y capacidad de adaptación a cualquier medio, sería el único ser apto para sobrevivir a una guerra nuclear. Viven alrededor de los recipientes de basura, en los mostradores de cocina, cerca de la mesa del comedor y en los baños. Se alimentan de desperdicios y caminan durante la noche sobre la comida, animales dormidos o los seres humanos, contaminándolos con sus vómitos y excrementos. Transmiten más de 70 enfermedades y cerca de 8% de la población humana es alérgica a ellas y desarrolla graves dolencias respiratorias si se exponen a lugares frecuentados por estos bichos. A pesar de tratarse de uno de los insectos más antiguos y desagradables, los problemas de salud e higiene asociados a esta plaga persisten y nos afectan cada día más.
Las ratas. A través de los siglos han acompañado al hombre en la Tierra y siempre han sido consideradas como una de las peores plagas. Además de transmitir graves enfermedades como la leptospirosis, salmonellosis, peste y parasitismo, también atacan y muerden a los seres humanos. Las ratas causan importantes daños en la infraestructura eléctrica y telefónica de las ciudades, ya que pelan y se comen los cables de las respectivas redes, lo que ocasiona un buen número de incendios. También contribuyen al deterioro y a la contaminación de buena parte de los alimentos. Se reproducen rápidamente. Dan de seis a doce crías por camada y una pareja de ratas llega a tener hasta 10.000 descendientes por año.

Asimismo, se puede afirmar que otro factor que pone en riesgo la salud pública y que, por tanto, obliga a disponer correctamente los residuos sólidos es la alimentación de animales con basura (vacas, cerdos, cabras, aves) sin vigilancia sanitaria. Esta práctica no es recomendable, ya que se corre el riesgo de propagar diversos tipos de enfermedades, pues no debemos olvidar que estos residuos suelen estar mezclados con desechos infecciosos provenientes de hospitales y centros de salud o de otros lugares contaminados donde la basura se descarga sin ninguna separación previa ni tratamiento.

Por último, otros riesgos que pueden presentarse por la mala disposición de estos residuos en los botaderos de basura, en las orillas de las carreteras y cerca de aeropuertos, son los accidentes provocados por la disminución de la visibilidad a causa de los humos producidos por las frecuentes quemas de basura o por colisiones con las aves asociadas a estos sitios.

1.3.2 Efectos en el ambiente

El efecto ambiental más obvio del manejo inadecuado de los residuos sólidos municipales lo constituye el deterioro estético de las ciudades, así como del paisaje natural, tanto urbano como rural. La degradación del paisaje natural, ocasionada por la basura arrojada sin ningún control, va en aumento; es cada vez más común observar botaderos a cielo abierto o basura amontonada en cualquier lugar.
1.3.2.1 Contaminación del agua

El efecto ambiental más serio pero menos reconocido es la contaminación de las aguas, tanto superficiales como subterráneas, por el vertimiento de basura a ríos y arroyos, así como por el líquido percolado (lixiviado), producto de la descomposición de los residuos sólidos en los botaderos a cielo abierto.

Es necesario llamar la atención respecto a la contaminación de las aguas subterráneas, conocidas como mantos freáticos o acuíferos, puesto que son fuentes de agua de poblaciones enteras. Las fuentes contaminadas implican consecuencias para la salud pública cuando no se tratan debidamente y grandes gastos de potabilización.

La descarga de residuos sólidos a las corrientes de agua incrementa la carga orgánica que disminuye el oxígeno disuelto, aumenta los nutrientes que propician el desarrollo de algas y dan lugar a la eutrofización, causa la muerte de peces, genera malos olores y deteriora la belleza natural de este recurso. Por tal motivo, en muchas regiones las corrientes de agua han dejado de ser fuente de abastecimiento para el consumo humano o de recreación de sus habitantes (figura 1.2).

Figura 1.2
Consecuencias de la descarga incontrolada de basura
La descarga de la basura en arroyos y canales o su abandono en las vías públicas, también trae consigo la disminución de los cauces y la obstrucción tanto de estos como de las redes de alcantarillado. En los periodos de lluvias, provoca inundaciones que pueden ocasionar la pérdida de cultivos, de bienes materiales y, lo que es más grave aún, de vidas humanas.

1.3.2.2 Contaminación del suelo

Otro efecto negativo fácilmente reconocible es el deterioro estético de los pueblos y ciudades, con la consecuente desvalorización, tanto de los terrenos donde se localizan los botaderos como de las áreas vecinas, por el abandono y la acumulación de basura. Además, la contaminación o el envenenamiento de los suelos es otro de los perjuicios de dichos botaderos, debido a las descargas de sustancias tóxicas y a la falta de control por parte de la autoridad ambiental.

1.3.2.3 Contaminación del aire

Los residuos sólidos abandonados en los botaderos a cielo abierto deterioran la calidad del aire que respiramos, tanto localmente como en los alrededores, a causa de las quemas y los humos, que reducen la visibilidad, y del polvo que levanta el viento en los periodos secos, ya que puede transportar a otros lugares microorganismos nocivos que producen infecciones respiratorias e irritaciones nasales y de los ojos, además de las molestias que dan los olores pestilentes.

1.3.3 Riesgos para el desarrollo social

Las difíciles condiciones económicas, las migraciones rurales, en suma, la pobreza, han convertido los recursos contenidos en la basura en el medio de subsistencia de muchas personas con sus familias. Esta realidad continuará mientras no existan para ellas otras formas más dignas de ganarse la vida. Existen riesgos sanitarios cuando se manejan residuos domésticos mezclados con los peligrosos, lo que ocurre en la mayoría de las ciudades de la Región, pues no hay recolección selectiva de residuos peligrosos, salvo en pocas ciudades donde los desechos de origen hospitalario se recogen de forma separada.

Para estas personas, dedicadas a labores de segregación, la violencia con arma blanca y arma de fuego y los accidentes de tránsito, por ser los más comunes, constituyen un problema de salud importante no solo por su frecuencia sino por la gravedad que revisten y las secuelas que dejan. Implican un costo social y económico importante para el segregador y su familia y para el Estado, el cual cubre de una u otra forma la mayor parte de los gastos de atención.
El estado de salud de la familia del segregador, que no realiza este tipo de labores, no difiere del sector popular, donde predominan las infecciones respiratorias y la diarrea aguda, que son las principales causas de morbimilitad en los niños; en las mujeres, son graves las enfermedades de transmisión sexual y las relacionadas con el embarazo, parto y puerperio; en adultos, se destacan las enfermedades cardiovasculares.

El grupo de población que se dedica a la recuperación de elementos en los sitios de disposición final demanda una mayor atención y esfuerzo del Estado para el mejoramiento de sus condiciones de vida, porque, además de los riesgos sanitarios directos a los cuales está expuesto, puede incidir en las condiciones de salud de la población que se encuentra a su alrededor.

En los sectores de altos ingresos, el manejo de los residuos domiciliarios no pasa de respetar los horarios de la empresa de aseo y de exigir la limpieza de las zonas aledañas a la vivienda.

Las actitudes humanas, familiares, profesionales, institucionales y las relaciones entre los diferentes actores del sector están profundamente marcadas por la cultura, los valores y las percepciones existentes entre los distintos componentes de las sociedades urbanas y semirurales de la Región. De esta manera, cualquier propuesta de orden técnico u operativo deberá incluir la dimensión social y cultural del contexto en el cual se pretenda aplicar.

1.3.4 Riesgos para el desarrollo urbano

Las autoridades se quejan habitualmente de la falta de disciplina social y cívica de la población y, por su parte, esta se queja de la incapacidad de las instituciones públicas para cumplir su papel. El primer reclamo de los sectores populares se refiere a la cobertura. Los indicadores de cobertura son engañosos porque representan el número de usuarios que contribuye con una tarifa y no se refieren a la calidad del servicio. De esta manera, muchos pagan pero no reciben el servicio, y otros sencillamente ni lo pagan ni lo reciben por encontrarse su vecindario en una situación de ilegalidad en relación con las tierras o los servicios públicos.

La inadecuada disposición de RSM también es fuente de deterioro de los ecosistemas urbanos de borde, como tierras agrícolas, zonas de recreación, sitios turísticos y arqueológicos, entre otros. Ello, a su vez, afecta a la flora y fauna de la zona.
Esta situación debe apreciarse como parte de la carencia de políticas urbanas, reflejadas en el evidente agravamiento de las condiciones habitacionales durante los últimos años.

Es común que los botaderos a cielo abierto se sitúen en las áreas donde vive la población económicamente más pobre, lo que aumenta el grado de deterioro de todas las condiciones y, en consecuencia, devalúa las propiedades, lo que constituye un obstáculo para el desarrollo urbano de la ciudad.

Asimismo, cerca de estos lugares se instalan tanto los segregadores como los intermediarios dedicados a la compra y venta de materiales obtenidos en los basurales, quienes en forma precaria construyen sus improvisadas viviendas y expanden así el cinturón de miseria y deterioro del vecindario.

Conviene advertir que uno de los criterios técnicos de selección del sitio para instalar un relleno sanitario es el de estar ubicado en lugares que tengan poco valor para el sector productivo o la urbanización y que reúnan condiciones para recibir residuos sin generar grandes impactos ambientales. Los terrenos en estos lugares suelen tener un costo reducido y pueden ser adquiridos por personas de bajos recursos.

En este sentido, nos encontramos ante un círculo vicioso, dado que aun cuando el relleno sanitario se construya primero, no tardarán en aparecer en los alrededores las viviendas de las personas más pobres. Es más, algunas veces las mismas autoridades locales expiden licencias de construcción de viviendas sin respetar los retiros recomendados, según el caso, por lo que más tarde sus habitantes pueden entrar en conflicto con la obra.
Guía para el diseño, construcción y operación de rellenos sanitarios manuales
2. GESTIÓN INTEGRAL DE LOS RESIDUOS SÓLIDOS MUNICIPALES
Guía para el diseño, construcción y operación de rellenos sanitarios manuales
2.1 El servicio de aseo urbano

El servicio de aseo urbano o limpieza urbana tiene como principales objetivos proteger la salud de la población y mantener un ambiente agradable y sano. Consta de las siguientes actividades: separación, almacenamiento, presentación para su recolección, recolección, barrido, transporte, tratamiento y disposición sanitaria final de los residuos sólidos; esta última es imprescindible para su manejo. Las primeras tres actividades son responsabilidad del generador de dichos residuos; las demás son competencia del municipio o del organismo encargado de la prestación del servicio.

Figura 2.1
Gestión integral de los RSM

Actividades básicas en un servicio de aseo urbano

Actividades complementarias
Como se puede deducir de la figura 2.1, el generador de RSM (vivienda, establecimiento comercial, industria) pasa a ser un usuario de los servicios de aseo urbano y tiene como responsabilidades separar sus residuos, almacenarlos en un recipiente adecuado y depositarlos con la frecuencia establecida en el lugar y horario indicados por el operador del servicio. Cabe destacar que, a diferencia de épocas pasadas, ahora existe la tendencia de separarlos en su lugar de origen a fin de facilitar el desarrollo de programas de recuperación y reciclaje.

En consecuencia, al municipio u operador del servicio de limpieza les corresponde recoger, transportar, barrer las vías y áreas públicas y colocar los RSM en un relleno sanitario. De manera complementaria, podrán asumir el procesamiento para su aprovechamiento o tratamiento a fin de obtener beneficios económicos y ambientales o de hacerlos inocuos.

2.1.1 Separación de residuos en la fuente

La separación de subproductos de los RSM en ALC se suele realizar en forma manual, ya sea en el sitio de origen, en las aceras, en el vehículo recolector o en el sitio de disposición final. Este último caso es muy frecuente en casi todos los botaderos de basura de las grandes ciudades y aun de pequeñas poblaciones. Esta actividad la realizan personas de escasos recursos que buscan el sustento diario para sus familias, en condiciones infrahumanas y sin seguridad social.

![Figura 2.2]

Recipites para la separación y almacenamiento de residuos sólidos domésticos

El municipio debe dar el primer paso para eliminar la segregación de basura en los botaderos y buscar el apoyo del comercio, la industria y la comunidad en general, con el propósito de ofrecer otras oportunidades a los segregadores. En efecto, debería
iniciar un proceso de acercamiento, capacitación y apoyo para la organización de estas personas en cooperativas autogestionarias, lo que les permitiría trabajar en condiciones dignas en los sitios de generación e incluso prestar otro tipo de servicios para salir de ese lamentable y degradante estado de marginalidad.

Las experiencias obtenidas en países en desarrollo con plantas industriales de separación de RSM han resultado un fracaso, por lo que se recomienda, en lo que concierne a las pequeñas poblaciones, que el municipio apoye los programas de recuperación en el punto de origen (viviendas, comercio, industria, etc.) y la construcción o adecuación de una bodega como centro de acopio a fin de que los segregadores puedan clasificar adecuadamente los diferentes materiales.

Un paso fundamental para la exitosa recuperación de residuos es separarlos en el punto de origen y es el generador quien tiene la responsabilidad de hacerlo.

2.1.2 Almacenamiento y presentación

El almacenamiento es la actividad de colocar los RSM en recipientes apropiados, de acuerdo con las cantidades generadas, el tipo de residuos y la frecuencia del servicio de recolección. Los recipientes deben tener un peso y diseño específicos que faciliten su manejo por los operarios y equipos; deben garantizar que el contenido no pueda entrar en contacto con el medio, es decir, estar dotados de tapas con buen ajuste que no permitan la entrada de agua, insectos o roedores, ni el escape de líquidos por sus paredes o el fondo; tampoco deben ser difíciles de vaciar. Podrán ser retornables o desechables.

La presentación de los RSM para su recolección es también una responsabilidad del generador o usuario del servicio de limpieza y consiste en colocar los recipientes en el lugar indicado (al borde de la acera, junto a la puerta de la casa, en una caja estacionaria o contenedor multifamiliar, en una canastilla, etc.), con la debida frecuencia y en el día y horario establecidos por el municipio o la entidad que presta el servicio de recolección.

2.1.3 Recolección y transporte

El recojo de RSM implica su transporte al lugar donde deberán ser descargados. Este puede ser una instalación de procesamiento, tratamiento o transferencia de materiales o bien un relleno sanitario. La recolección y transporte es la actividad más costosa del servicio de aseo urbano; en la mayoría de los casos representa entre 80 y 90% del costo total.
Los vehículos destinados al transporte de RSM deben reunir las condiciones propias para esta actividad. Pueden ser compactadores tradicionales, que se utilizan en las ciudades o también equipos no convencionales para las pequeñas poblaciones y áreas marginales, tales como el tractor agrícola conectado con un remolque, carretas de tracción animal, triciclos, etc.

2.1.4 Barrido y limpieza de vías y áreas públicas

El barrido y limpieza se complementa con la recolección y se le podría llamar “el maquillaje de los centros urbanos”; y tiene como propósito mantener las vías y áreas públicas libres de los residuos que arrojan al suelo los peatones, los asistentes a eventos especiales y espectáculos masivos, los responsables de la carga y descarga de mercancía o de materiales diversos, etc. La entidad encargada del aseo debe realizarla con una frecuencia tal que garantice que las vías y áreas públicas estén siempre limpias.

2.1.5 Transferencia

La transferencia es el traslado de RSM desde un vehículo de recolección pequeño hasta uno de mayor capacidad. En aquellas ciudades donde la distancia desde el punto de recojo hasta el de disposición final es superior a 20 km o el tiempo de viaje toma más de 15% de la jornada de trabajo, se presentan problemas económicos en el sistema porque el servicio resulta más costoso. En estos casos, se suele utilizar estaciones de transferencia y medios de transporte vial, ferroviario o barcazas.

2.1.6 Aprovechamiento

El abastecimiento de materias primas no es ilimitado y la recuperación de lo que se considera como residuo constituye un elemento esencial para la conservación de los recursos naturales; por lo tanto, su reúso, reciclaje y empleo constructivo se constituyen en una actividad importante en la gestión integral de los RSM, cuyo objetivo último es la disminución de su volumen y, especialmente, su aprovechamiento económico.

Algunas de las ventajas que le podría reportar al municipio la recuperación de estos materiales en el origen son:

- Generar empleo organizado por medio de grupos cooperativos.
- Reducir el volumen de RSM.
- Disminuir las necesidades de equipo recolector.
- Aumentar la vida útil de los rellenos sanitarios y, por lo tanto, disminuir la demanda de terrenos, que son cada día más escasos y costosos.
Disminuir los costos por la prestación del servicio de aseo urbano.
Conservar los recursos naturales y proteger el ambiente.

2.1.6.1 El reúso o reutilización

Un primer nivel de recuperación es el reúso, es decir, la utilización directa de un producto o material sin cambiar su forma o función básica. Un ejemplo es el reúso de envases como botellas, frascos de plástico y metal o cajas de cartón y madera.

La refabricación supone el desmonte de productos similares para su limpieza, inspección, reemplazo, restauración, ensamble, prueba y distribución subsiguientes. Los productos remanufacturados típicos son: motores o transmisiones de automóviles, compresores de refrigeración o de aire acondicionado, estufas, lavavajillas, etc.

Los productos desechados también pueden ser utilizados en su forma básica pero para una nueva función, como los viejos neumáticos que sirven como rompeolas o escolleras artificiales.

2.1.6.2 El reciclaje

El reciclaje es un proceso mediante el cual los residuos se incorporan al proceso industrial como materia prima para su transformación en un nuevo producto de composición semejante (vidrios rotos, papel y cartón, metales y plásticos, etc.).

El reciclaje supone cambiar tanto la forma como la función del producto original. Por ejemplo, las llantas usadas se cortan para hacer suelas de zapatos. Los textiles se transforman en trapos para desempolvar, en rellenos de almohadas o en retazos para cobijas y alfombras.

Las ventajas ambientales que ofrece el reciclaje son indiscutibles. Sin embargo, para su ejecución siempre debe tenerse en cuenta la poca calidad de los residuos de nuestra Región y que los beneficios económicos que permiten realizarlo de manera sostenible están sujetos a la demanda en el mercado. La tendencia mundial es incrementar al máximo el reciclaje de la basura.

Se debe garantizar la existencia de un mercado consumidor para los materiales, pues ningún sistema de recuperación de residuos tendrá éxito sin una venta asegurada de sus productos.
El reciclaje es parte de la solución, no la solución.

2.1.6.3 Uso energético y constructivo

Un tercer nivel de recuperación transforma el desecho en un material o una forma de energía diferente. Puede que el nuevo material sea un elemento recuperado o una sustancia relativamente homogénea utilizables como fuentes de energía (por ejemplo, gas combustible o biogás, producido por la digestión anaerobia de los residuos orgánicos y la recuperación de calor proveniente de la incineración de la basura). Asimismo, se trata del uso constructivo y de la transformación de RSM en diferentes productos (recuperación de terrenos mediante la construcción de rellenos sanitarios, muros de contención con llantas usadas de automotores y conversión de desechos orgánicos en compost).

2.1.7 Tratamiento

El tratamiento en el manejo integral de los RSM tiene como objetivo principal disminuir los riesgos para la salud y su potencial contaminante. Por ello se deberá optar por la solución más adecuada a las condiciones técnicas, económicas, sociales y ambientales locales. Los principales métodos de tratamiento son el compostaje, la lombricultura y la incineración, este último de gran impacto en la reducción de volumen.

Los métodos anteriores dejan residuos que es necesario disponer en un relleno sanitario, de ahí que no sean considerados como soluciones finales ni definitivas.

2.1.7.1 Compost

El compostaje es un proceso mediante el cual el contenido orgánico de la basura se reduce por la acción bacteriológica de microorganismos contenidos en los mismos residuos orgánicos, de lo que resulta un producto denominado compost. El compost es un material similar al humus (tierra); mejora los suelos pero no es un fertilizante y puede tener un valor comercial. Sin embargo, este valor suele ser menor que el costo de producción, por lo que este sistema debe ser subsidiado por el municipio.

El método de compostaje puede ser beneficioso para los países en desarrollo, ya que mediante este proceso es posible recuperar el gran porcentaje de materia orgánica que contienen los RSM y, dado que exige la separación del resto de residuos sólidos, se convierte en una buena oportunidad para iniciar el reciclaje de otros materiales. Pero antes de decidir la construcción de una planta de compostaje, se debe estudiar cuidadosamente si el producto cuenta con un mercado potencial, ya que muchas plantas en el mundo han fracasado por no poder comercializar el producto.
Figura 2.3
Procesamiento manual de la materia orgánica en pilas para la producción de compost

El compostaje en nuestro medio ha tenido poco éxito porque:

? Requiere la separación previa de los RSM, lo que aumenta los costos. A no ser que se recolecten selectivamente aquellos con alto contenido de materia orgánica, como, por ejemplo, residuos de restaurantes, mercados, etc.
? El tratamiento de grandes cantidades adicionales es poco flexible.
? El mercado del compost es inestable.
? La inversión de capital es elevada.
? Los costos de operación y mantenimiento de la planta de compostaje son altos.
? Requiere técnicos calificados para manejar la planta.
? Los costos de transporte hacia las zonas rurales son altos.
Sin embargo, en el caso de poblaciones pequeñas, es recomendable apilar manualmente los RSM que provienen de los mercados, pues su composición es en gran medida orgánica, aunque debe tenerse cuidado con los costos de distribución del producto, ya que pueden incrementar los costos totales de producción.

2.1.7.2 Lombricultura

El cultivo de una lombriz especial —la *Eisenia fetida*— con ciertos residuos orgánicos como sustrato o alimento (sobre todo, estiércol de ganado y residuos de cosechas) permite la conversión de este recurso en humus (mejorador de suelos) y proteína (como alimento de animales e incluso para el consumo humano), soluciona en parte el problema de la disposición de RSM y puede producir beneficios económicos.

Es necesario tener cuidado especial con estas prácticas, pues solo deben ser consideradas como alternativas complementarias en la gestión integral de los RSM y de ninguna manera como la solución al problema.

"La producción de compost en la Región mediante procesos simplificados, como el apilado, los biodigestores rotatorios y últimamente la lombricultura está cayendo en desuso debido a su alto costo y también porque sus promotores aseguraron a las autoridades municipales que obtendrían utilidades, cuando se ha comprobado que el uso de alternativas ecológicamente más aceptables tiene un costo semejante. Se estima que en los últimos veinte años se han comprado no menos de 30 plantas de compost, de las cuales algunas nunca llegaron a ser instaladas, quedando la maquinaria abandonada; otras quince cerraron a los pocos años porque las municipalidades no continuaron subvencionándolas".

2.1.7.3 Incineración

La incineración de los RSM permite la reducción de su volumen al dejar un material inerte (escorias y cenizas) cercano a 10% del inicial. Tal reducción es obtenida con hornos especiales en los que se puede garantizar suficiente aire de combustión, turbulencia, tiempos de retención y temperaturas adecuadas. Una combustión incompleta, como es el caso de las quemadas a cielo abierto, generará humos, cenizas y olores indeseables.
Para su uso se deben considerar los siguientes aspectos:

- Se requiere un elevado capital inicial.
- Implica altos costos operativos, la mayoría de las veces fuera del alcance de nuestras poblaciones.
- Se necesita técnicos bien calificados, que son escasos en nuestro medio.
- Su operación y mantenimiento son complejos y presentan muchos problemas.
- No es flexible cuando se requiere incinerar grandes cantidades adicionales.
- Se requiere combustible auxiliar a causa del alto contenido de humedad, lo que se traduce en un bajo poder calorífico para los RSM de la Región; esto aumenta considerablemente los costos de tratamiento.
- Se requieren equipos de control para evitar la contaminación del aire, ya que ningún incinerador deja de emitir contaminantes.

En consecuencia, la incineración como sistema de tratamiento de los RSM está descartada para las pequeñas poblaciones e incluso para muchas de las ciudades de América Latina, por lo que solo es recomendada si se quiere desnaturalizar los residuos hospitalarios u otros que resulten peligrosos.

No existen plantas de tratamiento mágicas para resolver el problema de los residuos y pasarán muchas generaciones hasta lograrlo.

2.1.8 Disposición final de los RSM

La disposición final es la última etapa operacional del servicio de aseo urbano.

Nadie quiere los residuos sólidos. No los podemos hacer desaparecer solo con el deseo ni esconderlos bajo el papel y las normas.

2.1.8.1 Prácticas inadecuadas en la disposición final de los RSM

Son inaceptables como prácticas de disposición final:

- La descarga de basura en los cursos de agua, lagos o mares.
- El abandono en botaderos a cielo abierto.
- La quema al aire libre.
- El uso de la basura como alimento de animales.
Los riesgos imputables a estas formas de disposición final son:

1. La descarga de la basura en los cursos de agua, lagos o mares provoca desequilibrio ecológico debido sobre todo al aumento excesivo de nutrientes y carga orgánica en el agua.
2. El botadero a cielo abierto ocasiona serios problemas de salud pública a causa de la proliferación de insectos y roedores transmisores de múltiples enfermedades, así como de los humos que se producen por las continuas quemas, los que contribuyen al deterioro estético de las ciudades y del paisaje natural.
3. Es altamente riesgoso para la salud humana alimentar a los animales con desechos crudos, a menos que exista un estricto control sanitario. Se puede admitir este tipo de alimentación solo si se garantiza que dichos desechos sean cocinados a una temperatura de 100 ºC durante 30 minutos.

El cuadro 2.1 muestra la evolución típica de los métodos de disposición final de RSM.

Cuadro 2.1

Proceso de desarrollo de métodos de disposición final en ciudades en desarrollo

<table>
<thead>
<tr>
<th>Alternativa/situción</th>
<th>Descripción</th>
</tr>
</thead>
<tbody>
<tr>
<td>Disposición en la vía pública</td>
<td>Esto es común en zonas que no cuentan con un servicio de recolección. El generador de RSM los dispone en algún lugar o botadero público.</td>
</tr>
<tr>
<td>Disposición local sin control en pequeños botaderos</td>
<td>Existe un servicio de recolección primaria y un transporte incipiente hacia un sitio cercano (por lo general, dentro de la ciudad) donde se colocan los residuos sin control alguno.</td>
</tr>
<tr>
<td>Botadero o vertedero municipal sin control</td>
<td>Existe recolección primaria y secundaria. Los RSM se transportan y disponen sin control alguno en un sitio alejado de la ciudad o bien fuera de ella.</td>
</tr>
<tr>
<td>Relleno controlado</td>
<td>Existe recolección primaria y secundaria. Los RSM se transportan y disponen con un control moderado en un sitio deliberadamente diseñado para tal fin y ubicado fuera de la ciudad. Los RSM se entierran con una frecuencia regular.</td>
</tr>
<tr>
<td>Relleno sanitario</td>
<td>El relleno sanitario es diseñado, construido y operado con criterios de ingeniería sanitaria y ambiental. El sitio cuenta con los permisos y requisitos de ley, y existe un programa de monitoreo ambiental. Los impactos ambientales son marginales y la población no se opone al proyecto.</td>
</tr>
</tbody>
</table>

2.1.8.2 **El relleno sanitario**

El método de disposición final de prácticamente todos los RSM lo constituye el relleno sanitario. Es el único admisible, ya que no representa peligro alguno ni riesgos para la salud pública. Además, minimiza la contaminación y otros impactos negativos en el ambiente. En los capítulos siguientes se consignarán los detalles más importantes sobre esta obra de saneamiento básico.

2.1.9 **Costos comparativos de los sistemas de tratamiento y disposición final**

Respecto a los costos de tratamiento y disposición final, y solo para cuestiones comparativas, en el cuadro 2.2 se presentan algunas cifras.

<table>
<thead>
<tr>
<th>Sistema</th>
<th>Costo de inversión US$/t instalada</th>
<th>Costo de inversión US$/t (con amortización)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Relleno sanitario, Estados Unidos</td>
<td>s. d.</td>
<td>30 (variable de 15 a 60)</td>
</tr>
<tr>
<td>Relleno sanitario, América Latina y el Caribe</td>
<td>5.000 a 15.000</td>
<td>6 (variable de 3 a 10)</td>
</tr>
<tr>
<td>Compostaje</td>
<td>20.000 a 40.000</td>
<td>25 (variable de 20 a 40)</td>
</tr>
<tr>
<td>Incineración, Estados Unidos</td>
<td>125.000 a 160.000</td>
<td>60 (variable de 50 a 90)</td>
</tr>
</tbody>
</table>

a Fuente: OPS.

b Las especificaciones técnicas para rellenos sanitarios en Estados Unidos son más estrictas que en la Región, lo cual influye en los costos.

c El costo por tonelada es el costo neto después de vender la energía. El costo bruto sería de US$90 por tonelada.

Hasta la fecha, el relleno sanitario es la técnica que mejor se adapta a la Región para disponer de manera sanitaria los RSM, y esto tanto desde el punto de vista técnico como económico.
2.1.10 Características principales del servicio de aseo urbano

En los países en desarrollo, el aseo urbano es uno de los problemas de saneamiento ambiental que exige una mayor atención de las autoridades gubernamentales y un mayor compromiso por parte de las instituciones de investigación. En el cuadro 2.3 se señalan las características que debe reunir el servicio de aseo urbano.

Cuadro 2.3
Características principales del servicio de aseo urbano

<table>
<thead>
<tr>
<th>Aspecto</th>
<th>Descripción</th>
</tr>
</thead>
<tbody>
<tr>
<td>Técnico</td>
<td>Fácil de implementar; operación y mantenimiento sencillos; uso de recursos humanos y materiales de la zona; comprende desde la producción hasta la disposición final de residuos sólidos.</td>
</tr>
<tr>
<td>Económico y financiero</td>
<td>Costo de inversión, operación, mantenimiento y administración al alcance de la población que debe sufragar el servicio.</td>
</tr>
<tr>
<td>Institucional</td>
<td>Administración y gestión del servicio simple y dinámica; es racional.</td>
</tr>
<tr>
<td>Social</td>
<td>Fomenta los hábitos positivos de la población y desalienta los negativos; es participativo y promueve la organización de la comunidad.</td>
</tr>
<tr>
<td>Salud</td>
<td>Se inscribe en un programa mayor de prevención de enfermedades infecciosas.</td>
</tr>
<tr>
<td>Ambiental</td>
<td>Minimiza impactos negativos en el suelo, agua y aire.</td>
</tr>
</tbody>
</table>

2.1.11 El aseo urbano y su relación con otros servicios de saneamiento básico

El saneamiento básico se refiere al suministro de agua de buena calidad para consumo humano, eliminación adecuada de excretas, higiene de los alimentos y de la vivienda, recolección y disposición final de RSM. El mejoramiento de uno de estos componentes produce efectos positivos en la salud, pero el impacto combinado es mayor que la suma de las partes. Por tal motivo, un plan integral de saneamiento
básico debe incluir estos ingredientes y su eficacia en lograr los objetivos de salud y bienestar esperados dependen del éxito de cada uno de ellos. En el cuadro 2.4 se incluye un gráfico, no sujeto a escala, del impacto acumulado de componentes de saneamiento básico en la salud y el bienestar de la población.

Cuadro 2.4

Impacto acumulado de los componentes de saneamiento básico

<table>
<thead>
<tr>
<th>Componente de saneamiento básico</th>
<th>Impacto positivo acumulado en la salud y el bienestar de la población</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abastecimiento de agua para consumo humano</td>
<td></td>
</tr>
<tr>
<td>Eliminación adecuada de excretas</td>
<td></td>
</tr>
<tr>
<td>Higiene de los alimentos</td>
<td></td>
</tr>
<tr>
<td>Higiene personal y de los alimentos</td>
<td></td>
</tr>
<tr>
<td>Recolección y disposición final de residuos sólidos</td>
<td></td>
</tr>
</tbody>
</table>

2.2 ¿Qué es la gestión integral de RSM?

La gestión integral de RSM consiste en toda una serie de actividades asociadas al control de la generación, separación, presentación, almacenamiento, recolección, transporte, barrido, tratamiento y disposición final, a fin de que (1) se armonicen con los mejores principios de la salud pública, la economía, la ingeniería y la estética y otras consideraciones ambientales, y (2) respondan a las expectativas públicas.

2.2.1 **Gestión política y administrativa**

2.2.1.1 **Responsabilidad de la autoridad local**

Uno de los indicadores que reflejan, a primera vista, la salud y calidad de vida de una población es la limpieza y belleza de su ciudad.

Es bueno recordar que el alcalde municipal es el gerente de esa empresa que se llama municipio y, en consecuencia, su nombre, al igual que los de sus colaboradores,
se verán sometidos a evaluación por parte de la comunidad. Al mismo tiempo, la gestión del alcalde muy probablemente repercutirá en su futuro y en el de su partido político.

En consecuencia, el manejo de los RSM y su disposición sanitaria final determinan también la calidad de la administración local y el compromiso de sus dirigentes, así como de quien representa la primera autoridad: el alcalde. La calidad del servicio de limpieza urbana se constituye en un indicador para evaluar la voluntad política, la capacidad de gestión y la responsabilidad de brindar la debida protección a la salud pública y a la de los trabajadores, así como el respeto y la protección del ambiente en el territorio municipal.

2.2.1.2 Sostenibilidad del servicio

Tradicionalmente se han asignado presupuestos exiguos para la gestión, la infraestructura y los equipos necesarios a fin de garantizar una buena operación y el mantenimiento de los sistemas de manejo y disposición de los RSM. Sin embargo, el público es cada vez más exigente en cuanto a las mejoras solicitadas, lo que implica precios más altos; pero desconoce o no quiere aceptar que los recursos deben provenir del pago oportuno por el servicio recibido.

Con el empleo de tecnología apropiada y una buena planificación y administración, es posible abaratar los costos por la prestación del servicio de aseo y, por lo tanto, se podría lograr el cobro de una tarifa razonable que permita su autofinanciamiento, de acuerdo con la capacidad de pago del usuario.

La educación sanitaria y ambiental se hace cada vez más importante a la hora de sensibilizar a la población sobre los problemas derivados del manejo inadecuado de los RSM. Es imprescindible si se quiere generar un cambio de actitud que permita entender la complejidad del problema y los requerimientos para una buena recolección, tratamiento y disposición final. Asimismo, debe hacer ver los costos que implica realizar estas actividades y la obligación que tienen todos de pagar por el servicio de aseo urbano a fin de garantizar su sostenibilidad. Es importante, además, para que se fomente la participación de los ciudadanos en las prácticas de separación y recuperación de los residuos en el punto de origen.

Una ciudad limpia es motivo de orgullo para sus habitantes.
2.2.1.3 Legislación ambiental y normatividad

Las regulaciones en materia de ambiente y RSM son cada vez más exigentes; sin embargo, la adopción de normas de países industrializados puede constituir un obstáculo para dinamizar los procesos en los países en vías de desarrollo o bien impedir el avance de la gestión de RSM en caso de que no se adapten a las condiciones locales.

El municipio es, por ley, el responsable del cumplimiento en su jurisdicción de las políticas ambientales nacionales, así como de la prestación del servicio público de aseo. De ahí la gran importancia de la gestión municipal en el caso de los residuos que se generen en su territorio.

Las normas europeas o americanas vigentes para ubicar y construir un relleno sanitario no pueden ser aplicadas en toda su dimensión en los países en desarrollo. En consecuencia, es necesario considerar los problemas locales especiales, incluidos los reducidos recursos financieros que permitan la aplicación de métodos adecuados para la construcción de un relleno suficientemente seguro.

2.2.2 Tendencias en la gestión de RSM

Las tendencias para resolver en forma eficiente y eficaz este problema aparecen en el cuadro 2.5. En este esquema se propone un orden o jerarquía para la gestión de los RSM, tanto en las naciones industrializadas como en los países en desarrollo.

Como puede observarse, la tendencia en la gestión de RSM, adoptada en los países desarrollados y que recomienda la Agencia de Protección Ambiental de los Estados Unidos (EPA), es la reducción en la fuente; en segundo lugar, el reciclaje, luego viene la combustión y, por último, la disposición final en rellenos sanitarios. Para los países en desarrollo, se presentan los mismos procesos en igual orden jerárquico, solo que en lugar de la combustión (por sus altos costos, impracticable en estos países), se propone su tratamiento dado que contienen un gran porcentaje de material orgánico. Es bueno anotar que en ambas propuestas la disposición final en rellenos sanitarios forma parte de la estrategia.
Guía para el diseño, construcción y operación de rellenos sanitarios manuales

Cuadro 2.5
Tendencias en la gestión integral de los RSM

<table>
<thead>
<tr>
<th>Países desarrollados</th>
<th>Países en desarrollo</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Reducción en la fuente</td>
<td>1. Reducción en la fuente</td>
</tr>
<tr>
<td>2. Reciclaje</td>
<td>2. Reciclaje</td>
</tr>
<tr>
<td>3. Combustión</td>
<td>3. Tratamiento</td>
</tr>
<tr>
<td>4. Relleno sanitario(^a)</td>
<td>4. Relleno sanitario</td>
</tr>
</tbody>
</table>

\(^a\) Es posible apreciar que en algunos países desarrollados se empieza a desalentar el uso del relleno sanitario porque este método requiere grandes extensiones de área y por problemas ambientales locales. En consecuencia, la tendencia es a construir grandes rellenos sanitarios, denominados *relenos sanitarios regionales*, que sirven a varios conglomerados urbanos, donde se aplican los principios de ingeniería con importantes economías de escala.

La implantación de rellenos sanitarios es necesaria, bien sea como solución exclusiva, bien como destino de los rechazos de otros sistemas. En consecuencia, este primer paso exige la selección de sitios aptos para su construcción, tanto desde el punto de vista social como económico.

Es importante tener en cuenta que los diferentes componentes de la gestión integral de RSM deben estar interrelacionados en cualquier programa o sistema y haber sido seleccionados para complementarse mutuamente.

Con todo, el relleno sanitario se encuentra en el nivel más bajo de la jerarquía de la gestión integral de RSM porque representa el último medio deseable para manejar los residuos de la sociedad. Sin embargo, conviene preguntar:

¿Qué hacer con:

- los residuos que no pueden ser reciclados ni tener un uso diferente?
- los materiales residuales que permanecen después de que los RSM han sido sometidos a un proceso de discriminación en una planta de separación de materiales?
- los materiales residuales que permanecen después de que los residuos sólidos han sido sometidos a un proceso de conversión de productos o energía?

Así, la disposición final de RSM segura, confiable y de largo plazo debe ser un componente importante en la gestión integral de RSM, sobre todo si se considera que muchos de estos materiales son irrecuperables para el ciclo productivo. De ahí que la única alternativa aceptable sea el relleno sanitario, con el que de una vez por todas se elimina la práctica del “botadero de basura”.
Cualquiera que sea el sistema de tratamiento de RSM elegido, siempre implicará la existencia de un relleno sanitario como solución complementaria a su funcionamiento.

En conclusión, la prioridad en la gestión de RSM, relacionada con su tratamiento y disposición final, debe estar orientada a la construcción de rellenos sanitarios, puesto que es urgente minimizar los riesgos para la salud de la población, frenar la contaminación del medio ambiente y el deterioro de los recursos naturales. Sin duda alguna, se trata de la actividad más crítica de todo el servicio de aseo urbano municipal (figura 2.4).

Los planes sectoriales de RSM deben tener como objetivo básico eliminar los botaderos de basura e ir ascendiendo en la jerarquía hacia procesos más limpios.

Figura 2.4
Prioridad en la gestión de RSM desde el punto de vista de la salud pública y la contaminación
2.2.3 Proceso de mejoramiento continuo en la disposición final de RSM

La práctica común de disposición final de RSM en la Región es el botadero de basura a cielo abierto.

Nota: el concepto de evolución en el mejoramiento de la disposición final de RSM se introdujo con el Programa de Acción Ambiental en la Unión Europea (1977-1981) y ha sido revisado y adaptado desde entonces.

Figura 2.5
Evolución en el mejoramiento de la disposición final de RSM

2.2.4 Propuesta de un sistema integrado de tratamiento y disposición final

En los últimos años está tomando fuerza, previa evaluación de las condiciones locales, la propuesta para que en un solo lugar se puedan concentrar tanto las actividades de clasificación y acopio de los subproductos recuperados de los RSM, los sistemas de tratamiento de residuos orgánicos por medio del proceso de compostaje en pilas y lombricultura, así como la disposición final en un relleno sanitario y la incineración en hornos especiales de los residuos infecciosos o su disposición en una celda especial.

Es posible la integración de estos sistemas en una misma área siempre y cuando cada uno tenga su propia infraestructura y no se los descuide por buscar solo el beneficio económico. La figura 2.6 presenta una vista en planta de esta propuesta para el sistema integrado de tratamiento y disposición final de los RSM.
Figura 2.6
Vista en planta de un sistema integrado de tratamiento y disposición final de RSM
Guía para el diseño, construcción y operación de rellenos sanitarios manuales
3. EL RELLENO SANITARIO
3.1 ¿Qué es un botadero de basura a cielo abierto o basurero?

El botadero de basura es una de las prácticas de disposición final más antiguas que ha utilizado el hombre para tratar de deshacerse de los residuos que él mismo produce en sus diversas actividades. Se le llama botadero al sitio donde los residuos sólidos se abandonan sin separación ni tratamiento alguno. Este lugar suele funcionar sin criterios técnicos en una zona de recarga situada junto a un cuerpo de agua, un drenaje natural, etc. Allí no existe ningún tipo de control sanitario ni se impide la contaminación del ambiente; el aire, el agua y el suelo son deteriorados por la formación de gases y líquidos lixiviados, quemazones y humos, polvo y olores nauseabundos.

Los botaderos de basura a cielo abierto son cuna y hábitat de fauna nociva transmisora de múltiples enfermedades. En ellos se observa la presencia de perros, vacas, cerdos y otros animales que representan un peligro para la salud y la seguridad de los pobladores de la zona, especialmente para las familias de los segregadores que sobreviven en condiciones infrahumanas sobre los montones de basura o en sus alrededores.

La segregación de subproductos de la basura promueve la proliferación de negocios relacionados con la reventa de materiales y el comercio ilegal. Ello ocasiona la depreciación de las áreas y construcciones colindantes; asimismo, genera suciedad, incremento de contaminantes atmosféricos y falta de seguridad por el tipo de personas que concurren a estos sitios.

En la actualidad, el hecho de que los municipios abandonen sus basuras en botaderos a cielo abierto es considerado una práctica irresponsable para con las generaciones presentes y futuras, así como opuesta al desarrollo sostenible.

Figura 3.1
Abandono de la basura en un botadero a cielo abierto
3.2 ¿Qué es un relleno sanitario?

El relleno sanitario es una técnica de disposición final de los residuos sólidos en el suelo que no causa molestia ni peligro para la salud o la seguridad pública; tampoco perjudica el ambiente durante su operación ni después de su clausura. Esta técnica utiliza principios de ingeniería para confinar la basura en un área lo más estrecha posible, cubriéndola con capas de tierra diariamente y compactándola para reducir su volumen. Además, prevé los problemas que puedan causar los líquidos y gases producidos por efecto de la descomposición de la materia orgánica.

Hace poco menos de un siglo, en Estados Unidos, surgió el relleno sanitario como resultado de las experiencias, de compactación y cobertura de los residuos con equipo pesado: desde entonces, se emplea este término para aludir al sitio en el cual los residuos son primero depositados y luego cubiertos al final de cada día de operación.

En la actualidad, el relleno sanitario moderno se refiere a una instalación diseñada y operada como una obra de saneamiento básico, que cuenta con elementos de control lo suficientemente seguros y cuyo éxito radica en la adecuada selección del sitio, en su diseño y, por supuesto, en su óptima operación y control.

3.2.1 Tipos de relleno sanitario

En relación con la disposición final de RSM, se podría proponer tres tipos de rellenos sanitarios, a saber:

Figura 3.2
Relleno sanitario operado con equipo pesado
3.2.1.1 Relleno sanitario mecanizado

El relleno sanitario mecanizado es aquel diseñado para las grandes ciudades y poblaciones que generan más de 40 toneladas diarias. Por sus exigencias es un proyecto de ingeniería bastante complejo, que va más allá de operar con equipo pesado. Esto último está relacionado con la cantidad y el tipo de residuos, la planificación, la selección del sitio, la extensión del terreno, el diseño y la ejecución del relleno, y la infraestructura requerida, tanto para recibir los residuos como para el control de las operaciones, el monto y manejo de las inversiones y los gastos de operación y mantenimiento.

Para operar este tipo de relleno sanitario se requiere del uso de un compactador de residuos sólidos, así como equipo especializado para el movimiento de tierra: tractor de oruga, retroexcavadora, cargador, volquete, etc. (figura 3.2)

3.2.1.2 Relleno sanitario semimecanizado

Cuando la población genere o tenga que disponer entre 16 y 40 toneladas diarias de RSM en el relleno sanitario, es conveniente usar maquinaria pesada como apoyo al trabajo manual, a fin de hacer una buena compactación de la basura, estabilizar los terraplenes y dar mayor vida útil al relleno. En estos casos, el tractor agrícola adaptado con una hoja topadora o cuchilla y con un cucharón o rodillo para la compactación puede ser un equipo apropiado para operar este relleno al que podríamos llamar semimecanizado (figura 3.3).

En México, después de 18 meses de estudios, pruebas y experimentos, la Secretaría de Desarrollo Urbano y Ecología estableció: “Adaptando un tractor de 31 HP, en 8 horas de trabajo y con un peón de ayuda, pueden confinar sanitariamente los residuos de poblaciones de hasta 80.000 habitantes, o sea, aproximadamente 40 t/d de basura”.

Con base en experiencias previas, se puede afirmar que es necesario el empleo de equipos de movimiento de tierras (tractores de orugas o retroexcavadoras) en forma permanente cuando al relleno sanitario se llevan más de 40 t/día de RSM. En la Región, esto equivale por lo general a poblaciones mayores de 40.000 habitantes.

Por su versatilidad, el tractor agrícola puede servir para prestar o apoyar el servicio de recolección de basura si de preferencia se le engancha un remolque con volteo hidráulico de unos 6 a 8 metros cúbicos de capacidad o bien una caja compactadora, dependiendo de las necesidades y recursos de la localidad (figura 3.4).

Figura 3.3
Tractor agrícola adaptado para las operaciones del relleno sanitario

Figura 3.4
Remolque enganchado a un tractor agrícola para la recolección de basura
Ocasionalmente, este mismo equipo podrá emplearse en la realización de algunas obras públicas en el municipio, con lo que se aprovecharía al máximo la inversión realizada.

3.2.1.3 *Relleno sanitario manual*

Es una adaptación del concepto de relleno sanitario para las pequeñas poblaciones que por la cantidad y el tipo de residuos que producen –menos de 15 t/día–, además de sus condiciones económicas, no están en capacidad de adquirir el equipo pesado debido a sus altos costos de operación y mantenimiento.

El término *manual* se refiere a que la operación de compactación y confinamiento de los residuos puede ser ejecutada con el apoyo de una cuadrilla de hombres y el empleo de algunas herramientas.

3.2.2 *Métodos de construcción de un relleno sanitario*

El método constructivo y la subsecuente operación de un relleno sanitario están determinados principalmente por la topografía del terreno, aunque dependen también del tipo de suelo y de la profundidad del nivel freático. Existen dos maneras básicas de construir un relleno sanitario.

3.2.2.1 *Método de trincha o zanja*

Este método se utiliza en regiones planas y consiste en excavar periódicamente zanjas de dos o tres metros de profundidad con una retroexcavadora o un tractor de orugas. Hay experiencias de excavación de trincheras de hasta 7 metros de profundidad. Los RSM se depositan y acomodan dentro de la trincha para luego compactarlos y cubrirlas con la tierra excavada.

Se debe tener especial cuidado en periodos de lluvias dado que las aguas pueden inundar las zanjas. De ahí que se deba construir canales perimetриcos para captarlas y desviarlas e incluso proveer a las zanjas de drenajes internos. En casos extremos, se puede construir un techo sobre ellas o bien bombar el agua acumulada. Sus taludes o paredes deben estar cortados de acuerdo con el ángulo de reposo del suelo excavado.

La excavación de zanjas exige condiciones favorables tanto en lo que respecta a la profundidad del nivel freático como al tipo de suelo. Los terrenos con nivel freático alto o muy próximo a la superficie no son apropiados por el riesgo de contaminar el acuífero. Los terrenos rocosos tampoco lo son debido a las dificultades de excavación (figura 3.5).
3.2.2.2 Método de área

En áreas relativamente planas, donde no sea factible excavar fosas o trincheras para enterrar la basura, esta puede depositarse directamente sobre el suelo original, el que debe elevarse algunos metros, previa impermeabilización del terreno. En estos casos, el material de cobertura deberá ser transportado desde otros sitios o, de ser...
posible, extraído de la capa superficial. Las fosas se construyen con una pendiente suave en el talud para evitar deslizamientos y lograr una mayor estabilidad a medida que se eleva el relleno (figura 3.6).

Sirve también para rellenar depresiones naturales o canteras abandonadas de algunos metros de profundidad. El material de cobertura se excava de las laderas del terreno o, en su defecto, de un lugar cercano para evitar los costos de acarreo. La operación de descarga y construcción de las celdas debe iniciarse desde el fondo hacia arriba (figura 3.7).

El relleno se construye apoyando las celdas en la pendiente natural del terreno; es decir, la basura se descarga en la base del talud, se extiende y apisona contra él y se recubre diariamente con una capa de tierra. Se continúa la operación avanzando sobre el terreno, conservando una pendiente suave de unos 18,4 a 26,5 grados en el talud; es decir, la relación vertical-horizontal de 1:3 a 1:2, respectivamente, y de 1 a 2 grados en la superficie, o sea, de 2 a 3,5%.

Figura 3.7
Método de área para rellenar depresiones
3.2.2.3 **Combinación de ambos métodos**

Dado que estos dos métodos de construcción de rellenos sanitarios tienen técnicas similares de operación, es posible combinar ambos para aprovechar mejor el terreno y el material de cobertura, así como para obtener mejores resultados (figura 3.8).

Toda ciudad o pequeña localidad debe contar con un relleno sanitario propio o de un municipio cercano para disponer sus RSM. De lo contrario, se seguirá favoreciendo la práctica irresponsable del botadero a cielo abierto en su territorio.

3.2.3 **Ventajas y limitaciones de un relleno sanitario**

El cuadro 3.1 resume las principales ventajas y desventajas del relleno sanitario.

3.2.4 **Uso futuro del relleno sanitario**

El uso futuro de un relleno sanitario depende del clima, de su localización respecto al área urbana, de su distancia de las zonas habitadas, de su extensión o
1. La inversión inicial de capital es inferior a la que se necesita para instaurar el tratamiento de residuos mediante plantas de incineración o de compost.

2. Tiene menores costos de operación y mantenimiento que los métodos de tratamiento.

3. Un relleno sanitario es un método completo y definitivo, dada su capacidad para recibir todo tipo de RSM.

4. Genera empleo de mano de obra poco calificada, disponible en abundancia en los países en desarrollo.

5. Recupera gas metano en los rellenos sanitarios que reciben más de 500 t/día, lo que puede constituir una fuente alternativa de energía para algunas ciudades.

6. Su lugar de emplazamiento puede estar tan cerca del área urbana como lo permita la existencia de lugares disponibles, lo que reduce los costos de transporte y facilita la supervisión por parte de la comunidad.

7. Permite recuperar terrenos que se consideraban improductivos o marginales, tornándolos útiles para la construcción de parques, áreas recreativas y verdes, etc.

8. Un relleno sanitario puede comenzar a funcionar en corto tiempo como método de eliminación de residuos.

9. Se considera flexible porque puede recibir mayores cantidades adicionales de residuos con poco incremento de personal.

1. La adquisición del terreno es difícil debido a la oposición de los vecinos al sitio seleccionado, fenómeno conocido como NIMBY (not in my back yard ‘no en mi patio trasero’), por diversas razones:
 - la falta de conocimiento sobre la técnica del relleno sanitario.
 - se asocia el término relleno sanitario al de botadero a cielo abierto.
 - la evidente desconfianza mostrada hacia las administraciones locales que no garantizan la calidad ni sostenibilidad de la obra.
 - la falta de saneamiento legal del lugar.

2. El rápido proceso de urbanización, que limita y encarece el costo de los pocos terrenos disponibles, lo que obliga a ubicar el relleno sanitario en sitios alejados de la población.

3. La vulnerabilidad de la calidad de las operaciones del relleno y el alto riesgo de transformarlo en un botadero a cielo abierto, principalmente por la falta de voluntad política de las administraciones municipales para invertir los fondos necesarios a fin de asegurar su correcta operación y mantenimiento.

4. No se recomienda el uso del relleno clausurado para construir viviendas, escuelas, etc.

5. La limitación para construir infraestructura pesada por los asentamientos y hundimientos después de clausurado el relleno.

6. Se requiere un monitoreo luego de la clausura del relleno sanitario, no solo para controlar los impactos ambientales negativos, sino también para evitar que la población use el sitio indebidamente.

7. Puede ocasionar impacto ambiental de largo plazo si no se toman las previsiones necesarias en la selección del sitio y no se ejercen los controles para mitigarlos. En rellenos sanitarios de gran tamaño conviene analizar los efectos del tráfico vehicular, sobre todo de los camiones que transportan los residuos por las vías que confluyen al sitio y que producen polvo, ruido y material volante. En el vecindario el impacto lo generan los líquidos, gases y malos olores que pueden emanar del relleno.

8. Los predios o terrenos situados alrededor del relleno sanitario pueden devaluarse.

9. En general, no puede recibir residuos peligrosos.
área superficial y de las características constructivas. Estas últimas tienen que ver con la configuración final del relleno, la altura y el grado de compactación y, por supuesto, la capacidad económica de la población.

El terreno de un relleno sanitario clausurado se presta para desarrollar programas de recuperación paisajística y social como un parque, un campo deportivo o una zona verde. Por fortuna ya existen en la Región experiencias de aprovechamiento de estos sitios transformados en parques y áreas recreativas en México D. F., Santiago de Chile y Buenos Aires, entre otras ciudades.

No se recomienda la construcción de edificaciones, viviendas, escuelas ni infraestructura pesada sobre la superficie del relleno, debido a su poca capacidad para soportar estructuras pesadas, además de los problemas que pueden ocasionar los hundimientos y la generación de gases.

Para la recuperación del paisaje es conveniente la siembra de plantas de raíces cortas y césped o grama. En muchos casos, después de la cobertura final, el pasto crece en forma espontánea.

3.3 **Reacciones que se generan en un relleno sanitario**

3.3.1 **Cambios físicos, químicos y biológicos**

Los RSM depositados en un relleno sanitario presentan una serie de cambios físicos, químicos y biológicos de manera simultánea e interrelacionada. Estos cambios se describen a continuación a fin de dar una idea de los procesos internos que se presentan cuando los residuos son confinados.

Cambios físicos. Los cambios físicos más importantes están asociados con la compactación de los RSM, la difusión de gases dentro y fuera del relleno sanitario, el ingreso de agua y el movimiento de líquidos en el interior y hacia el subsuelo, y con los asentamientos causados por la consolidación y descomposición de la materia orgánica depositada.

El movimiento de gases es de particular importancia para el control operacional y el mantenimiento del sistema. Por ejemplo, cuando el biogás se encuentra atrapado, la presión interna puede causar agrietamiento de la cubierta y fisuras, lo que permite el ingreso de agua de lluvia al interior del relleno sanitario, lo que provoca mayor generación de gases y lixiviados. Lo anterior contribuye a que se produzcan hundimientos y asentamientos diferenciales en la superficie y que se desestabilicen los terraplenes por el mayor peso de la masa de desechos.
Reacciones químicas. Las reacciones químicas que ocurren dentro del relleno sanitario e incluso en los botaderos de basura abarcan la disolución y suspensión de materiales y productos de conversión biológica en los líquidos que se infiltran a través de la masa de RSM, la evaporación de compuestos químicos y agua, la adsorción de compuestos orgánicos volátiles, la deshalogenación y descomposición de compuestos orgánicos y las reacciones de óxido-reducción que afectan la disolución de metales y sales metálicas. (La importancia de la descomposición de los productos orgánicos reside en que estos materiales pueden ser transportados fuera del relleno sanitario o del botadero de basura con los lixiviados.)

Reacciones biológicas. Las más importantes reacciones biológicas que ocurren en los rellenos sanitarios son realizadas por los microorganismos aerobios y anaerobios, y están asociadas con la fracción orgánica contenida en los RSM. El proceso de descomposición empieza con la presencia del oxígeno (fase aerobia); una vez que los residuos son cubiertos, el oxígeno empieza a ser consumido por la actividad biológica. Durante esta fase se genera principalmente bióxido de carbono. Una vez consumido el oxígeno, la descomposición se lleva a cabo sin él (fase anaerobia): aquí la materia orgánica se transforma en bióxido de carbono, metano y cantidades traza de amoniaco y ácido sulfhídrico.

3.3.2 Generación de líquidos y gases

Casi todos los residuos sólidos sufren cierto grado de descomposición, pero es la fracción orgánica la que presenta los mayores cambios. Los subproductos de la descomposición están integrados por líquidos, gases y sólidos.

Líquido lixiviado o percolado. La descomposición o putrefacción natural de la basura produce un líquido maloliente de color negro, conocido como lixiviado o percolado, parecido a las aguas residuales domésticas, pero mucho más concentrado.

Las aguas de lluvia que atraviesan las capas de basura aumentan su volumen en una proporción mucho mayor que la que produce la misma humedad de los RSM, de ahí que sea importante interceptarlas y desviarlas para evitar el incremento de lixiviado; de lo contrario, podría haber problemas en la operación del relleno y contaminación en las corrientes y nacimientos de agua y pozos vecinos.

Gases. Un relleno sanitario se comporta como un digestor anaerobio. Debido a la descomposición o putrefacción natural de los RSM, no solo se producen líquidos sino también gases y otros compuestos. La descomposición de la materia orgánica por acción de los microorganismos presentes en el medio tiene dos etapas: aerobia y anaerobia.
La aerobia es aquella fase en la cual el oxígeno que está presente en el aire contenido en los intersticios de la masa de residuos enterrados es consumido rápidamente.

La anaerobia, en cambio, es la que predomina en el relleno sanitario porque no pasa el aire y no existe circulación de oxígeno, de ahí que se produzcan cantidades apreciables de metano (CH\textsubscript{4}) y dióxido de carbono (CO\textsubscript{2}), así como trazas de gases de olor punzante, como el ácido sulfhidrico (H\textsubscript{2}S), amoniaco (NH\textsubscript{3}) y mercaptanos.

El gas metano reviste el mayor interés porque, a pesar de ser inodoro e incoloro, es inflamable y explosivo si se concentra en el aire en una proporción de 5 a 15\% en volumen; los gases tienden a acumularse en los espacios vacíos dentro del relleno y aprovechan cualquier fisura del terreno o permeabilidad de la cubierta para salir. Cuando el gas metano se acumula en el interior del relleno y migra a las áreas vecinas, puede generar riesgos de explosión. Por lo tanto, se recomienda una adecuada ventilación de este gas, aunque en los pequeños rellenos este no es un problema muy significativo.

3.3.3 Hundimientos y asentamientos diferenciales

En el relleno sanitario se producen también hundimientos (asentamientos uniformes o fallas) que son el problema más obvio y fácil de controlar con una buena compactación; además, asentamientos diferenciales en la superficie, que con el tiempo originan depresiones y grietas de diversos tamaños, lo que causa encharcamientos de agua y un incremento de lixiviados y gases. Estos problemas dependen de la configuración y altura del relleno, del tipo de desechos enterrados, del grado de compactación y de la precipitación pluvial en la zona.

3.4 Principios básicos de un relleno sanitario

Se considera oportuno resaltar las siguientes prácticas básicas para la construcción, operación y mantenimiento de un relleno sanitario:

- Supervisión constante durante la construcción con la finalidad de mantener un alto nivel de calidad en la construcción de la infraestructura del relleno y en las operaciones de rutina diaria, todo esto mientras se descarga, recubre la basura y compacta la celda para conservar el relleno en óptimas condiciones. Esto implica tener una persona responsable de su operación y mantenimiento.
- Desviación de las aguas de escorrentía para evitar en lo posible su ingreso al relleno sanitario.
Considerar la altura de la celda diaria 2 para disminuir los problemas de hundimientos y lograr mayor estabilidad.

El cubrimiento diario con una capa de 0,10 a 0,20 metros de tierra o material similar.

La compactación de los RSM con capas de 0,20 a 0,30 metros de espesor y finalmente cuando se cubre con tierra toda la celda. De este factor depende en buena parte el éxito del trabajo diario, pues con él se puede alcanzar, a largo plazo, una mayor densidad y vida útil del sitio.

Lograr una mayor densidad (peso específico), pues resulta mucho más conveniente desde el punto de vista económico y ambiental.

Control y drenaje de percolados y gases para mantener las mejores condiciones de operación y proteger el ambiente.

El cubrimiento final de unos 0,40 a 0,60 metros de espesor se efectúa con la misma metodología que para la cobertura diaria; además, debe realizarse de forma tal que pueda generar y sostener la vegetación a fin de lograr una mejor integración con el paisaje natural.

3.4.1 Importancia de la cobertura

El cubrimiento diario de los residuos y la cobertura final del relleno sanitario con tierra es de vital importancia para el éxito de esta obra. Ello debe cumplir las siguientes funciones:

- Minimizar la presencia y proliferación de moscas y aves.
- Impedir la entrada y proliferación de roedores.
- Evitar incendios y presencia de humos.
- Reducir los malos olores.
- Disminuir la entrada de agua de lluvia a la basura.
- Orientar los gases hacia los drenajes para evacuarlos del relleno sanitario.
- Darle al relleno sanitario una apariencia estética aceptable.
- Servir como base para las vías de acceso internas.
- Permitir el crecimiento de vegetación.

Una de las diferencias entre un relleno sanitario y un botadero a cielo abierto es la utilización de material de cobertura (tierra) para confinar los residuos al final de cada jornada diaria y separar adecuadamente la basura del ambiente exterior.

2 Unidad de construcción del relleno sanitario. Véase el numeral 5.11.
Guía para el diseño, construcción y operación de rellenos sanitarios manuales
4. EL RELLENO SANITARIO MANUAL
Guía para el diseño, construcción y operación de rellenos sanitarios manuales
4.1 ¿Por qué un relleno sanitario manual?

El relleno sanitario manual se presenta como una alternativa técnica y económicamente factible, tanto en beneficio de las poblaciones urbanas y rurales con menos de 30.000 habitantes —que no tienen la forma de adquirir equipo pesado para construir y operar un relleno sanitario convencional— como de las áreas marginadas de algunas ciudades.

Las poblaciones asentadas en los alrededores de las grandes ciudades generalmente son afectadas por la presencia de botaderos de basura e incluso suelen suelen carecer del servicio de recolección.

Esta técnica de operación manual solo requiere equipo pesado para la adecuación del sitio, es decir, para la construcción de la vía interna, la preparación de la base de soporte o la excavación de zanjas y la extracción de material de cobertura de acuerdo con el avance y método de relleno. Los demás trabajos pueden realizarse con los propios trabajadores, lo que permite a las pequeñas comunidades de escasos recursos —incapaces de adquirir y mantener en forma permanente un tractor de orugas o una retroexcavadora—, disponer adecuadamente la reducida cantidad de basura generada por ellas empleando mano de obra poco calificada.

Un relleno sanitario puede servir a dos o más poblaciones, hasta llegar a convertirse en una solución regional; es decir, estar en condiciones de brindar el servicio de disposición final de RSM a varias poblaciones cercanas. En tal sentido, los municipios pequeños deben evaluar la conveniencia técnica, económica, social y ambiental de llevar sus residuos a un relleno sanitario regional o al del municipio vecino o tener uno propio.

El relleno sanitario manual es adecuado para poblaciones que generen hasta 15 toneladas diarias. Sin embargo, se precisa de un análisis detenido de las condiciones locales en cada región, puesto que por las características del sitio, la disponibilidad de material de cobertura, el clima, el costo de la mano de obra, etc., tal vez resulte preferible que la construcción y la operación del relleno sanitario se realicen, parcial o permanentemente, con equipo pesado.

La operación de un relleno sanitario manual que reciba más de 15 toneladas diarias de basura puede complicarse bastante, ya que requiere un mayor número de personas, sobre todo para los procesos de esparcido y compactación y para la extracción y el acarreo del material de cobertura. Por lo tanto, en estos casos la operación deberá ser apoyada al menos con un tractor agrícola, tal como se explicó en el apartado sobre rellenos semimecanizados.
4.2 ¿Se justifica que una pequeña población tenga un tractor de orugas para operar un relleno sanitario?

Con el propósito de demostrar que no se justifica que una pequeña población tenga un tractor de orugas para operar un relleno sanitario, se presenta el siguiente ejemplo:

Imaginemos dos poblaciones con las siguientes características:

<table>
<thead>
<tr>
<th>Población</th>
<th>Número de habitantes</th>
<th>Generación per cápita de residuos sólidos kg/hab/día</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>250.000</td>
<td>0,5</td>
</tr>
<tr>
<td>B</td>
<td>30.000</td>
<td>0,4</td>
</tr>
</tbody>
</table>

Con fines comparativos, supongamos que en cada una de las dos poblaciones se utiliza para operar un relleno sanitario un pequeño tractor de orugas de 100 HP (D4) con las siguientes características:

- Distancia de acarreo: 30 m
- Empujador de hoja angulable
- Velocidad de regreso: 4 km/h
- Rendimientos corregidos para la eficiencia con basura y tierra en rellenos sanitarios:

<table>
<thead>
<tr>
<th>Material</th>
<th>Rendimientos del equipo(^a) (m(^3)/h)</th>
</tr>
</thead>
<tbody>
<tr>
<td>? Basura</td>
<td>37</td>
</tr>
<tr>
<td>? Tierra</td>
<td>14</td>
</tr>
</tbody>
</table>

\(^a\) Los valores presentados son generales y solo deben servir como guía para el cálculo. Los rendimientos en cada región pueden ser consultados con los proveedores de los equipos.

Con base en la anterior información, se determinará la capacidad del equipo con la cantidad de basura recibida de cada población:
Solución

1. **Generación de basura**

 Generación de basura = Población (hab) * ppc (kg/hab/día) / 1.000 = (t/día)

 ? Población A = 250.000 hab * 0,5 kg/hab/día = 125 t/día

 ? Población B = 30.000 hab * 0,4 kg/hab/día = 12 t/día

2. **Recolección de basura** (6 días a la semana, es decir, de lunes a sábado)

 ? Población A = 125 t/día * 7/6 = 145,8 t/día

 ? Población B = 12 t/día * 7/6 = 14 t/día

3. **Volumen de basura** (para una densidad de 0,6 t/m³ recién compactada)

 ? Población A = $\frac{145.8 \, t/día}{0.6 \, t/m^3} = 243.1 \, m^3/día$

 ? Población B = $\frac{14 \, t/día}{0.6 \, t/m^3} = 23.3 \, m^3/día$

4. **Material de cobertura** (se estima en 20% de la basura recién compactada)

 ? Población A = 243,1 m³/día * 0,2 = 48,6 m³ de tierra/día

 ? Población B = 23,3 m³/día * 0,2 = 4,7 m³ de tierra/día

5. **Tiempo del tractor de orugas** (en una jornada de 8 horas)

 Población A

 Basura = $\frac{243,1 \, m^3/día}{37 \, m^3/hora} = 6,57 \, horas/día$

 Tierra = $\frac{48,6 \, m^3/día}{14 \, m^3/hora} = 3,47 \, horas/día$

 Total = 10,04 horas/día
Población B

\[
\text{Basura} = \frac{23,3 \text{ m}^3/\text{día}}{37 \text{ m}^3/\text{hora}} = 0,63 \text{ horas/día}
\]

\[
\text{Tierra} = \frac{4,7 \text{ m}^3/\text{día}}{14 \text{ m}^3/\text{hora}} = 0,33 \text{ horas/día}
\]

Total \[0,96 \text{ horas/día}\]

Los cálculos indican que una ciudad de 250.000 habitantes requiere un tractor de orugas que trabaje una jornada completa (8 horas/día), incluso horas extra. Pero de ninguna manera se justifica este equipo para poblaciones de 30.000 habitantes o menos.

Por lo tanto, no cabe duda de que el relleno sanitario manual es una solución viable para los casos anteriores. El empleo de la mano de obra puede solucionar de manera económica el problema de la disposición final de basura en estas pequeñas comunidades.

4.3 Planificación

Un relleno sanitario manual, aunque sea una obra pequeña, no deja de ser un proyecto de ingeniería, en el que gran parte de los problemas futuros se previenen con una buena planificación que va desde la concepción y diseño de la obra hasta su construcción, operación y clausura.

La planificación inicial sentará las bases para las diferentes actividades que se deberán cumplir. Esta fase consiste en la evaluación de criterios para la selección del sitio y de las diversas alternativas de terrenos para su localización, diseño, construcción, operación, mantenimiento y monitoreo. La planificación, además, permite contar con la información básica sobre la población beneficiada; la procedencia, cantidad y calidad de RSM; el uso futuro del terreno una vez clausurado el relleno sanitario; los recursos para su financiamiento y la asesoría de un profesional competente.

La planificación debe incluir un programa de información al público que explique cuáles son las ventajas y desventajas de la implantación de un relleno sanitario y la importancia de la clausura del botadero de basura. El apoyo del público es una de las metas que debe procurar cualquier administración local que esté interesada en construir esta obra de saneamiento básico, puesto que sin este respaldo es muy probable que ella no pueda llevarse a la práctica o que su operación y mantenimiento sean deficientes.
Tanto la administración como la comunidad en general deben tener presente que un relleno sanitario manual, como cualquier obra de saneamiento básico, requiere recursos para su financiación en lo que concierne a los estudios para la selección del sitio, el diseño, la construcción y la fase inicial de operación. Igualmente, durante todo el tiempo de su vida útil, la administración municipal, o quien opere el sistema, debe incluir en el presupuesto un rubro para la operación y mantenimiento del relleno.

Es fundamental que la población sea consciente de los beneficios que le reporta eliminar el botadero de basura municipal y construir un relleno sanitario, así como del costo que demanda este proyecto. Si la comunidad está dispuesta a pagar, se garantizará la sostenibilidad de un buen servicio de limpieza pública y de la operación y el mantenimiento de la obra.

Todo usuario o generador de RSM debe cumplir con pagar una tarifa, la que debe ser estimada de acuerdo con su capacidad económica si desea obtener un buen servicio de aseo urbano que, sin lugar a dudas, contribuirá a mejorar la calidad de vida de toda la población.

4.4 Selección del sitio

Para la selección del sitio se deberán preferir aquellos lugares donde las operaciones del relleno sanitario conduzcan a mejorar el terreno; de esta manera, se ahorrarán problemas operacionales futuros.

En muy pocas ocasiones un terreno reunirá todas las condiciones ideales para la construcción de un relleno sanitario. Por lo tanto, se debe elegir aquellos que presenten las mejores características y analizar sus inconvenientes en función de los recursos técnicos y económicos disponibles.

Para llevar a buen término la construcción de un relleno sanitario, es necesario atender los siguientes aspectos:

4.4.1 Participación de las autoridades locales y de la población

Participación de las autoridades locales

La selección debe hacerse de común acuerdo con las autoridades del sector ambiental y de salud y, por supuesto, con los responsables de planificación de la administración local (figura 4.1).
Para presentar el proyecto del relleno sanitario a las autoridades, se recomienda seguir los siguientes pasos:

Primero, el ingeniero sanitario, ambiental o técnico en saneamiento y un delegado de la administración local (director de la oficina de planificación, obras públicas, etc.) determinarán cuáles son los sitios disponibles y adecuados para construir un relleno sanitario manual. Para ello es importante emplear mapas de la ciudad, planos topográficos, fotos aéreas e incluso recurrir a los nuevos Sistemas de Información Geográfica (SIG).

Segundo, el ingeniero o técnico especialista —apoyado en el análisis y el dictamen que sobre el terreno y las características del suelo presente el geólogo— preparará un informe con el orden de elegibilidad de los sitios preseleccionados para la construcción del relleno sanitario. Se recomienda incluir algunos cálculos y diseños preliminares, con un estimado de su vida útil y el costo de las obras.

Tercero, la decisión final estará supeditada a razones administrativas y políticas, teniendo en cuenta la opinión pública, por lo que se deberá presentar el proyecto ante el concejo o cabildo municipal para que se apruebe el acuerdo respectivo y, si el terreno no es propiedad del municipio, se autorice al alcalde la realización de las negociaciones y de las transferencias presupuestales para la adquisición del terreno y la construcción del relleno con todas sus obras complementarias.
Cuarto, ordenar el levantamiento topográfico (en aquellos casos en que se lo considere necesario), elaborar cálculos y diseños definitivos del relleno sanitario, estimar costos, buscar su financiación y proceder a su ejecución.

7 Participación de la población

Desde el inicio del proceso de selección, el público debe tener la oportunidad de participar, comentar y objetar las propuestas realizadas. En todos los casos, es esencial asegurar el apoyo de los distintos sectores de la población durante las fases de selección, diseño, construcción, operación, mantenimiento y uso futuro del relleno.

Este aspecto es muy importante dada la confusión que existe en la comunidad, que puede creer que un relleno sanitario es un botadero de basura a cielo abierto. Se recomienda, entonces, efectuar un programa de educación sanitaria, con énfasis en el saneamiento ambiental, a fin de contribuir a la protección de la salud y de evitar la contaminación. Estos son los aspectos más críticos en las escuelas y colegios locales, asociaciones comunitarias, casas de cultura, clubes populares, organizaciones no gubernamentales, etc. También se recomienda hacer uso de los medios de comunicación y hasta de la influencia de las iglesias locales.

La propuesta de construir un relleno sanitario para darle solución al problema puede verse obstaculizada, e incluso rechazada, si la población vecina no participa en programas de educación sanitaria y negociación³ dirigidos por el gobierno local e instituciones ambientales. En consecuencia, se debe buscar que los vecinos entiendan que el problema de la basura es complejo y no se resuelve abandonándola en los alrededores de su vecindario; también, para que acepten la obra, hay que persuadirlos de que los sistemas de tratamiento son complementarios al relleno sanitario.

4.4.2 Aspectos técnicos

El ingeniero o técnico especializado deberá tener en cuenta los siguientes factores:

7 Plan de ordenamiento territorial o plan regulador

Para la selección del sitio, es fundamental que se consulte el plan de ordenamiento territorial o plan regulador del municipio, a fin de tener en cuenta la delimitación del perímetro urbano, la tendencia de crecimiento o las zonas de futura expansión.

³ La negociación con la población vecina al nuevo relleno sanitario puede incluir desde la construcción de infraestructura básica, obras de compensación para cubrir necesidades de la comunidad, hasta disminución de la tarifa de aseo urbano, entre otras.
visión, así como las posibles áreas permitidas para la construcción de rellenos sanitarios de acuerdo con los usos del suelo aprobados por el concejo o cabildo municipal.

Localización

Se recomienda que el relleno sanitario esté ubicado en la dirección o el sentido de crecimiento de la urbanización; sin embargo, para evitar conflictos con los vecinos, lo mejor es que este sitio comience a poblarse cuando concluya la vida útil de la obra; de esta manera, la comunidad podrá beneficiarse con un parque o una zona verde.

Debe tenerse cuidado al seleccionar sitios en terrenos que puedan estar en zonas arqueológicas o áreas de protección especial, lo que implica elevar consultas al Instituto Nacional de Cultura o a la autoridad competente para obtener los respectivos permisos. No se deberá construir rellenos en lotes que estén debajo de líneas de alta tensión.

Figura 4.2

Localización del relleno sanitario cerca del área urbana
Desde el punto de vista del servicio de aseo urbano, la ubicación del terreno juega un papel importante en cuanto a la distancia al centro urbano (plaza principal) y el tiempo que tarda el vehículo recolector en llegar a su destino final, porque de ello depende el número de viajes diarios con cargas de basura que este pueda hacer. Esto repercute en la cobertura del servicio de recolección y el costo del transporte de los desechos. Por lo tanto, el sitio no debe estar a más de 30 minutos de ida y regreso del centro del poblado (figura 4.2).

La cercanía del relleno permitirá, además, una mayor vigilancia y supervisión por parte de la comunidad, que de esta forma podrá evaluar la calidad de su operación y mantenimiento. Una vez terminada su vida útil, el relleno podrá ser utilizado por los vecinos, de acuerdo con las propuestas del proyecto inicial.

El relleno sanitario debe estar lo más cerca posible del área urbana, en especial si se trata de un municipio pequeño.

Es bueno recordar que no existe consenso sobre una distancia mínima entre un relleno y un centro poblado que garantice la ausencia de riesgos para la salud y el ambiente, pues mucho depende de la disponibilidad de terrenos adecuados, de la topografía del lugar, de la cantidad y calidad de residuos que se van a disponer, de la vida útil del sitio y, sobre todo, del tipo de infraestructura que tendrá el relleno para evitar o mitigar los efectos negativos.

En estos casos, no se debe olvidar que si bien definir una distancia juega un papel importante en la reducción de posibles riesgos o molestias, no es algo definitivo. El mayor obstáculo para acordar una distancia es la percepción de algunos técnicos y vecinos del sitio que piensan que este tipo de obras debe estar lo más lejos posible, ya que pueden terminar convirtiéndose en simples botaderos, debido a que las administraciones locales no siempre invierten en la infraestructura necesaria ni garantizan la calidad de la operación después de iniciada la descarga de RSM en el lugar. Una de las causas de esta desconfianza radica en los continuos cambios de estas administraciones y, con ello, de sus prioridades. El síndrome NIMBY (*not in my back yard* ‘no en mi patio trasero’) es una clara muestra de lo anterior.

Algunos especialistas recomiendan que los linderos del terreno de un relleno sanitario sean trazados a una distancia mínima de 200 metros del área residencial más cercana; sin embargo, para el caso de un relleno sanitario manual —que es muy pequeño—, la distancia puede ser mucho menor. De todas maneras, a la hora de emitir un juicio en particular, es conveniente analizar las variables anotadas y, en especial, las condiciones del suelo y del entorno. No hay que olvidarlo: *cada caso es único y amerita su propia evaluación.*
También hay que señalar que incluso existen experiencias de grandes rellenos sanitarios construidos en medio de una ciudad, sin que por ello se hayan presentado problemas serios para la salud y el ambiente, dado que su construcción, operación y mantenimiento han sido manejados con la debida responsabilidad.

4.4.3 Análisis preliminar

Las visitas de campo se realizarán conjuntamente con las autoridades locales de salud y del ambiente. En estas visitas es conveniente contar con planos urbanísticos de la región, en escala 1:10.000 ó 1:25.000, con el propósito de ubicar los posibles sitios con respecto a las vías principales (salidas y entradas) hacia el área urbana, a las corrientes de agua más próximas y a la distribución de los suelos típica de la región.

Una vez en la oficina de planificación local, con ayuda del plan regulador, se consideran los usos del suelo y sus restricciones, así como las futuras zonas de expansión del área urbana, todo esto con el objeto de analizar su compatibilidad con el relleno sanitario que eventualmente se construiría en un lugar determinado.

4.4.4 Investigación de campo

Los mejores sitios visitados serán investigados con mayor detalle. Por ejemplo, se evaluará si existen pozos de abastecimiento de agua para consumo, las características del suelo y el nivel freático; además, se tratará de identificar puntos de referencia, accidentes geográficos, nacimientos de agua en el terreno, caminos y construcciones importantes.

Si se cuenta con un plano urbanístico en escala 1:2,000 o 1:5,000, se podrán apreciar estos detalles, evaluar mejor las ventajas y desventajas de cada uno ellos, así como los cálculos preliminares sobre vida útil y costos. Esta información será sometida a la consideración de las autoridades locales, pues son ellas las que toman la decisión final.

Conviene recordar que una de las decisiones iniciales puede ser la integración de los sistemas de tratamiento y disposición final de RSM, lo que, por supuesto, influirá en la localización del sitio y en la extensión del terreno. Sin embargo, en este caso, los criterios de selección para la construcción del relleno serán determinantes. Estos criterios son:

? Vías de acceso

El terreno deberá estar cerca de una vía principal para que sea de fácil acceso y resulten más económicos el transporte de los RSM y la construcción de la vía de
penetración interna. Esta deberá permitir el ingreso fácil, seguro y rápido de los vehículos recolectores en todas las épocas de año (figura 4.3)

? **Condiciones hidrogeológicas**

Antes de negociar sobre el terreno, es importante analizar el tipo de suelo sobre el que se construirá el relleno sanitario, el cual deberá ser impermeable, es decir, arcilloso; de lo contrario, se debe impermeabilizar con una capa de arcilla

Para la construcción de rellenos sanitarios manuales, dada la poca cantidad y tipo de RSM que se dispondrán (capítulo 5, numeral 5.1.3), se pueden admitir excepciones en cuanto a la exigencia de impermeabilizar el sitio.

En otras palabras, se considera que no es necesario impermeabilizar el terreno en los siguientes casos: en zonas donde prácticamente no llueve (p. ej.: costa de Chile y sur del Perú) o donde las lluvias rara vez superan los 300 mm/año; en lugares cuyo clima es muy seco o la radiación solar es alta y donde la poca humedad que contiene la basura se pierde fácilmente por evaporación (p. ej.: costa atlántica de Colombia); en sitios con rellenos ya construidos donde no se aprecia producción de líquidos lixiviados o biogás, o donde la profundidad del nivel freático es mayor de 30 metros.
compactada de 0,30 metros de espesor o, en última instancia, con una geomembrana de PVC\(^4\) o polietileno de alta densidad. En algunos casos, es conveniente probar la permeabilidad del suelo que servirá de base al futuro relleno a fin de evitar la contaminación del acuífero (véase el apéndice A).

Lo anterior es posible, ya que al no existir agua en la basura, el proceso de descomposición bacteriano no se produce o es muy lento, razón por la cual se generan muy pocas cantidades de lixiviado y biogás, que quedan retenidos en el interior del relleno. Conviene recordar que la capacidad de campo de la tierra de cobertura y la basura influyen para que no se liberen líquidos, máxime cuando la compactación en estos rellenos manuales es considerada débil (capítulo 5, numeral 5.91).

Igualmente, se requiere evaluar la profundidad del manto freático o aguas subterráneas. Se recomienda tener por lo menos una distancia de 1,0 metros entre el nivel freático y los residuos sólidos cuando se tenga material limoarcilloso.

El terreno ideal —es decir, aquel que reúna todos los requisitos para la construcción de un relleno sanitario— no existe; en consecuencia, se deberá elegir la mejor entre varias alternativas, teniendo en cuenta las condiciones de cada localidad.

Vida útil del terreno

Es deseable que la capacidad del sitio sea suficientemente grande para permitir su utilización por un mínimo de cinco años, a fin de que su vida útil se compatibilice con la gestión, los costos de adecuación y las obras de infraestructura. Pero esto no quiere decir que si se dispone de terrenos con una capacidad menor, estos deban ser descartados de plano. Es probable que en estos terrenos pequeños se pueda construir obras piloto que permitirán ganar la confianza de la población, con el objeto de acceder después a otros con una mayor vida útil.

El cuadro 4.2 ilustra la extensión del terreno requerida para la construcción de un relleno sanitario manual en una población pequeña, teniendo en cuenta la generación diaria per cápita de RSM, la densidad de compactación del relleno, el volumen del material de cobertura, la profundidad o altura del relleno y las áreas adicionales para la infraestructura y retiros como zonas de amortiguamiento de impactos ambientales. Para poblaciones de mayor tamaño, se considera que el técnico deberá realizar los cálculos con más cuidado, tal como se indica en el capítulo 5. Para el cálculo se tuvieron en cuenta los criterios que se resumen en el cuadro 4.1.

\(^4\) Cloruro de polivinilo.
Cuadro 4.1
Criterios para el ejemplo de cálculo del área requerida para un relleno sanitario manual en una población pequeña

<table>
<thead>
<tr>
<th>ppc kg/h/día</th>
<th>Densidad de compactación de los residuos kg/m³</th>
<th>Material de cobertura m³</th>
<th>Densidad del relleno estabilizado kg/m³</th>
<th>Altura o profundidad del relleno sanitario m</th>
<th>Área adicional, infraestructura y amortiguamiento de impactos m²</th>
</tr>
</thead>
<tbody>
<tr>
<td>0,2 a 0,5</td>
<td>500</td>
<td>20% del volumen de RSM compactados</td>
<td>600</td>
<td>3 a 6</td>
<td>30% del área del relleno</td>
</tr>
</tbody>
</table>

Cuadro 4.2
Población, generación de RSM, área requerida y vida útil del relleno sanitario

<table>
<thead>
<tr>
<th>Población (habitantes)</th>
<th>Vida útil (años)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ppc kg/h/día</td>
</tr>
<tr>
<td></td>
<td>Área del terreno (hectáreas)</td>
</tr>
<tr>
<td>250</td>
<td>1</td>
</tr>
<tr>
<td>500</td>
<td>2</td>
</tr>
<tr>
<td>1.000</td>
<td>3</td>
</tr>
<tr>
<td>2.000</td>
<td>4</td>
</tr>
<tr>
<td>3.000</td>
<td>5</td>
</tr>
<tr>
<td>4.000</td>
<td>6</td>
</tr>
<tr>
<td>5.000</td>
<td>7</td>
</tr>
<tr>
<td>7.500</td>
<td>8</td>
</tr>
<tr>
<td>10.000</td>
<td>9</td>
</tr>
</tbody>
</table>
Material de cobertura

El terreno debe tener abundante material de cobertura de fácil extracción y con buen contenido de arcilla, dada su baja permeabilidad y elevada capacidad de absorción de contaminantes. Cuando esta sea escasa en el sitio, se deberá garantizar su adquisición en forma permanente y suficiente, tomando en cuenta su disponibilidad en lugares vecinos en donde los costos de transporte no sean muy altos. De no ser así, es preferible desechar el lugar porque corre el riesgo de convertirse en un botadero a cielo abierto.

Conservación de los recursos naturales

El terreno deberá estar ubicado aguas abajo de la captación del agua destinada para el consumo humano y, en general, de las fuentes de agua superficial. Lo ideal sería que estuviese en una área aislada, de poco valor comercial, en una zona marginal o en un erial; es decir, donde el relleno sanitario no tenga un alto potencial de contaminación.

Condiciones climatológicas

La dirección del viento predominante es importante debido a las molestias que puede ocasionar la descarga de los residuos y las labores de extracción de tierra y cobertura; a los papeles, el material liviano y el polvo que se levantan, y también al posible transporte de malos olores a las áreas vecinas. Por ello, el relleno sanitario deberá estar ubicado de tal manera que el viento circule desde el área urbana hacia él; en caso contrario, para contrarrestar esta molestia se deben sembrar árboles y vegetación espesa en toda la periferia del relleno. La vegetación, además, impide que los vecinos y transeúntes observen las operaciones de disposición de los RSM y le da una mejor apariencia estética a la obra.

La precipitación pluvial es otro factor de vital importancia, por lo que se recomienda contar con registros de lluvias y periodos secos, a fin de estimar la cantidad de agua que cae en la zona de estudio. Estos datos pueden ser proporcionados por las instituciones nacionales de meteorología o las empresas de servicios de agua y drenaje. Aun cuando la precipitación pluvial se expresa en milímetros por año, conviene tener los registros mensuales de varios años para el dimensionamiento de las obras de drenaje perimetral y de lixiviado.

Propiedad del terreno

Un proyecto de relleno sanitario deberá iniciarse solo cuando el municipio o ayuntamiento tenga en su poder el documento legal que acredite la propiedad sobre el
terreno, cuando esté autorizado por las respectivas autoridades y, de otro lado, cuando sea aceptado por la mayoría de la comunidad vecina, teniendo en cuenta su utilización futura.

El saneamiento fiscal del terreno es fundamental antes de iniciar la construcción de la infraestructura y la operación del relleno sanitario.

Figura 4.4
Dirección predominante del viento

Costos del terreno y de las obras de infraestructura

Una vez preseleccionados los terrenos más adecuados para la construcción del relleno sanitario, es prioritario averiguar a quién pertenece la propiedad, si está en venta o es factible de negociar y especialmente cuál es su valor. Es frecuente que el propietario quiera especular con su valor cuando se entera del interés del municipio por el terreno. El alcalde podría apelar al recurso legal de “declaratoria de utilidad pública”, con lo que el avalúo del predio se hará de acuerdo con los registros de catastro.

Otro aspecto que se debe tener en cuenta es el costo que requieren las obras de infraestructura a fin de ingresar y preparar el terreno y de hacerlo apto para recibir los residuos de la población. Siempre es conveniente calcular el valor de las obras y, por supuesto, compararlo con los recursos de que dispone el municipio para que en el futuro no se abandone el proyecto por falta de presupuesto. Si estas inversiones resultan muy altas y se prevé que están fuera de las posibilidades del municipio, es mejor buscar otro terreno.
4.5 Uso futuro del terreno

En todo proyecto de construcción de un relleno sanitario deberá contemplarse desde el principio el uso que se le dará al terreno una vez terminada la vida útil de la obra, a fin de integrarlo al ambiente natural transformándolo en una zona verde, área deportiva, jardín, vivero o en un bosque. Conviene recordar que la utilización final del relleno sanitario manual está limitada por la extensión del terreno —que rara vez supera las dos o tres hectáreas—, el bajo grado de compactación, la cercanía al centro poblado y los costos para su adecuación.

Una buena estrategia para presentar el proyecto es entregar los planos del diseño de ingeniería con el diseño artístico o paisajístico que tendría el terreno cuando concluya su vida útil y, de ser posible, acompañado de una maqueta, puesto que las formas tridimensionales podrán ser mejor entendidas, sobre todo por los vecinos.

Figura 4.5
Uso futuro del relleno sanitario manual

La selección del sitio es tanto o más importante para las poblaciones pequeñas.

4.6 Cronograma de actividades

El cuadro 4.3 presenta un posible cronograma que puede servir como guía para orientar y programar las actividades y la ejecución de las obras conducentes a la implantación de un relleno sanitario manual.
Cuadro 4.3
Cronograma de actividades para el proceso de implantación de un relleno sanitario

<table>
<thead>
<tr>
<th>Actividad</th>
<th>1 mes</th>
<th>2 mes</th>
<th>3 mes</th>
<th>4 mes</th>
<th>5 mes</th>
<th>6 mes</th>
</tr>
</thead>
<tbody>
<tr>
<td>? Gestiones preliminares</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>? Toma de decisión de autoridades locales</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>? Programa de educación sanitaria para la población</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>? Consulta con entidades financieras</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>? Identificación del sitio y sus alrededores</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>? Presentación de alternativas a las autoridades locales</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>? Selección del sitio y negociación</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>? Legalización del terreno (saneamiento fiscal)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>? Levantamiento topográfico y preparación del plano</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>? Estudios y diseño (incluye presupuesto)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>? Presentación a las autoridades y comunidad vecina</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>? Consecución de recursos de crédito para la inversión</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>? Preparación del terreno</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>? Limpieza y desmonte</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>? Preparación del suelo de soporte</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>? Corte de taludes</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>? Construcción de la infraestructura periférica</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>? Camino de acceso al terreno</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>? Drenaje pluvial</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>? Desvío y aislamiento de eventuales cursos de agua</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>? Construcción de la infraestructura del relleno</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>? Caminos internos</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>? Drenaje pluvial perimetral e interno</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>? Drenaje de líquido lixiviado o percolado</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>? Drenaje de gases</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>? Construcciones auxiliares</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>? Encerramiento perimetral</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>? Arborización perimetral</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>? Caseta de control (con instalaciones sanitarias)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>? Valla publicitaria o cartel de presentación</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>? Pozos de monitoreo</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>? Clausura del (de los) botadero(s) local(es)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>? Exterminio de roedores y artrópodos</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>? Cubrimiento con tierra y apisonado</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>? Encerramiento</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>? Avisos de prensa y cartel de clausura</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>? Inicio de la operación del relleno sanitario manual</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
4.7 Proyecto básico

Una de las herramientas básicas para el buen desarrollo de un proyecto de relleno sanitario manual o de un sistema integrado de tratamiento y disposición final de RSM es la ejecución de un levantamiento topográfico del terreno, que permita observar su extensión y diferencias de altura, resumidas estas en un plano; otra herramienta la constituyen los planos\(^5\) con el diseño y los detalles del proyecto.

4.7.1 Levantamiento topográfico

Una vez definido el sitio y adquirida la propiedad del terreno por el municipio o ayuntamiento, se contratará el levantamiento topográfico y se solicitará el plano con el terreno original a una escala de 1:250 ó 1:500, con las elevaciones representadas con curvas de nivel por cada metro y acotadas cada cinco metros. El lindero, la identificación de los terrenos vecinos, la ubicación de la vía principal, el camino de acceso, el drenaje natural, la localización del banco de material y otras características especiales pueden ser señalados en este plano.

En caso de que no se cuente con personal profesional o capacitado para esta actividad, el municipio puede contratar a un topógrafo bajo la orientación del técnico especialista o solicitar este servicio a la Secretaría de Salud u Obras Públicas de la región o del Estado.

En comunidades muy pequeñas, donde no sea posible contar con equipos de topografía o niveles de precisión para determinar el área del terreno y su capacidad volumétrica, se pueden levantar las medidas con cinta métrica y nivel de mano. En casos extremos de proyectos más sencillos, una manguera es suficiente, dado que estas obras no requerirán mayor precisión.

4.7.2 Diseño del relleno sanitario

El diseño materializa la concepción de la obra en general y tiene como objetivo orientar su desarrollo y planificar su construcción; además, permite presentarlo ante las autoridades del municipio o ayuntamiento y a la comunidad para su promoción y búsqueda de financiamiento.

El diseño básico contemplará la delimitación del área total del sitio y del terreno que deberá ser rellenado sucesivamente e indicará el método de construcción, el

\(^5\) Los planos son dibujos técnicos que se emplean para presentar los detalles de las condiciones existentes y características del sitio, así como la propuesta de desarrollo de la obra y la localización y detalles de la infraestructura.
El diseño se deberá presentar en un máximo de 10 a 12 planos (de conformidad con las normas técnicas de cada país), que contengan como mínimo los dibujos en planta y los diversos perfiles del proyecto, tales como:

? la configuración del terreno original y la delimitación del área total.
? la adecuación inicial del terreno y la disposición en planta de las obras de infraestructura y construcciones auxiliares.
? detalles de las obras de acceso, drenajes principales y construcciones auxiliares.
? el orden del proceso constructivo para orientar la operación del relleno.
? las configuraciones parciales del relleno de acuerdo con el avance al primer año, tercer año, etc.
? la configuración final del relleno, incluido su tratamiento paisajístico.

Con el deseo de hacer más comprensible este documento, todo lo concerniente a la etapa de estudio de la información básica, cálculos y diseño del relleno y su infraestructura será presentado en el capítulo 5. A continuación, más bien, ilustramos las obras de preparación del sitio y de la infraestructura necesaria para recibir los RSM, así como la secuencia de construcción, operación y mantenimiento requeridos.
4.8 Gráficos de los pasos necesarios para el diseño, construcción y operación

4.8.1 Estudios de campo y diseño

1. Identificación del sitio por rellenar y sus alrededores

2. Análisis de las condiciones hidrogeológicas

3. Levantamiento topográfico

4. Elaboración del diseño

5. Análisis de costos

6. Presentación del proyecto a las autoridades

Figuras 4.6
Estudios de campo y diseño
4.8.2 Preparación del terreno y construcción de las obras

1. Limpieza y desmonte
2. Construcción de la vía de acceso directa
3. Encerramiento del terreno
4. Siembra de árboles en el perímetro
5. Construcción del drenaje perimétrico
6. Preparación del suelo de soporte
7. Construcción de drenajes internos
8. Preparación del drenaje de gases
9. Construcción de la caseta de control e instalaciones sanitarias
10. Excavación de pozos de monitoreo
11. Diseño y ubicación del cartel de identificación
12. Visitas con los líderes de la comunidad vecina

Figuras 4.7
Preparación del terreno y construcción de obras
4.8.3 Operación y mantenimiento

1. Adquisición de herramientas
2. Compra de los elementos de protección de los trabajadores
3. Inicio de la operación del relleno
4. Clausura del (de los) botadero(s)
5. Mantenimiento permanente
6. Preparación del presupuesto anual

Figuras 4.8
Operación y mantenimiento
5. DISEÑO DE UN RELLENOSANITARIO MANUAL
Guía para el diseño, construcción y operación de rellenos sanitarios manuales
Una vez legalizada la propiedad del terreno, se puede proceder a contratar los estudios y diseños del relleno sanitario y de su infraestructura. Para estos estudios, el ingeniero proyectista o contratista deberá recopilar la información básica y realizar necesariamente una o varias visitas de campo a fin de reconocer el terreno.

Para evaluar el sitio, el técnico llevará consigo el plano topográfico, el cual debe contener la descripción original del terreno (alturas y depresiones), un gráfico o cuadro que indique las cantidades de residuos y la tierra necesaria como cobertura que se estima se acumularán entre los próximos 5 a 10 años. La visita es importante para identificar la zona de llenado y sus alrededores, así como para localizar las obras de infraestructura y construcciones auxiliares, tales como el trazo de la vía de acceso, los drenajes, el patio de maniobras, la caseta de vigilancia. En esta etapa, además, se evalúa el método de relleno, la fuente de material de cobertura, la distribución y el diseño de los terraplenes de residuos para, finalmente, empezar a definir la secuencia de construcción.

5.1 Información básica

5.1.1 Aspectos demográficos

? Población

Es necesario conocer el número de habitantes meta para definir las cantidades de RSM que se han de disponer. Hay que anotar que en la producción de estos residuos se debe discriminar entre la producción rural y la urbana. La primera presentará menos exigencias por ser más bien reducida, si bien la recolección resulta más difícil. En cambio, la producción urbana es más notoria por razones de concentración, aumento de población y desarrollo tecnológico y urbanístico, de ahí que merezca especial atención.

? Proyección de la población

Resulta de suma importancia estimar la población futura que tendrá la comunidad por lo menos entre los próximos 5 a 10 años, a fin de calcular la cantidad de RSM que se deberá disponer diaria y anualmente a lo largo de la vida útil del relleno sanitario. En el cuadro 5.1 se consigna la información básica a este respecto.

El crecimiento de la población se podrá estimar por métodos matemáticos, o bien vaciando los datos censales en una gráfica y haciendo una “proyección” de la curva dibujada.
A continuación, un ejemplo de método matemático referido al crecimiento geométrico; es decir, al de las poblaciones biológicas en expansión, para el cual se asume una tasa de crecimiento constante. La siguiente expresión nos muestra su cálculo:

\[Pf = Po (1 + r)^n \]

Donde:

- \(Pf \) = Población futura
- \(Po \) = Población actual
- \(r \) = Tasa de crecimiento de la población
- \(n = (t_{\text{final}} - t_{\text{ inicial}}) \) intervalo en años
- \(t \) = variable tiempo (en años)

Sin embargo, se recomienda comparar los resultados obtenidos con otros métodos de proyección.

5.1.2 Generación de RSM en las pequeñas poblaciones

De la generación y composición de los desechos que serán manejados en las pequeñas comunidades, podemos decir que para el cálculo de producción el sector residencial es predominante, siendo las demás actividades tan incipientes que su consideración no alcanza a afectar de manera apreciable la cantidad total de RSM, salvo los provenientes de los mercados y de los visitantes, cuando existen atractivos turísticos.

Cuando se requiera llevar a cabo un sistema de recolección, tratamiento y disposición final, convendría estimar las cantidades de residuos que la población genera. Con el objetivo de ahorrar recursos, se sugiere utilizar para estos análisis métodos indirectos, como los que se presentan a continuación.

? Producción per cápita

La producción per cápita de RSM se puede estimar globalmente así:

\[\text{ppc} = \frac{\text{DSr en una semana}}{\text{Pob} \times 7 \times \text{Cob}} \]
¿Donde:

\begin{align*}
\text{ppc} &= \text{Producción por habitante por día (kg/hab/día)} \\
\text{DSr} &= \text{Cantidad de RSM recolectados en una semana (kg/sem)}^6 \\
\text{Pob} &= \text{Población total (hab)} \\
7 &= \text{Días de la semana} \\
\text{Cob} &= \text{Cobertura del servicio de aseo urbano (\%)}
\end{align*}

La cobertura del servicio es el resultado de dividir la población atendida por la población total:

\[
\text{Cobertura del servicio (\%)} = \frac{\text{Población atendida (hab)}}{\text{Población total (hab)}} [5-3]
\]

Hay que señalar que también es posible relacionar la cantidad de RSM generados con las viviendas, o sea, kg/vivienda/día, dado que la basura es entregada por vivienda. Esto, además, tiene la ventaja de facilitar el conteo de las casas.

Con base en los muestreos de RSM realizados en algunas poblaciones pequeñas, rurales y áreas marginales en la Región sobre las características que se analizan en este trabajo, se ha encontrado que la ppc presenta rangos de entre 0.2 y 0.6 kg/hab/día. Tales valores son bastante representativos para la mayoría de estas poblaciones. Se recomienda tener presente lo anterior, ya que en la mayoría de los casos no se justifica un muestreo exhaustivo.

En los lugares turísticos, conviene recordar que la producción de RSM, sobre todo en las temporadas de vacaciones, se puede incrementar notablemente, con lo que se complica su manejo y disposición.

En algunas comunidades rurales, como en la selva amazónica o en zonas agrícolas, la generación per cápita de RSM puede alcanzar valores que fluctúan entre 0.6 y 1.2 kg/hab/día.

Producción total

El conocimiento de la producción total de RSM permite tomar decisiones sobre el equipo de recolección más adecuado, la cantidad de personal, las rutas, la frecuencia de recolección, la necesidad de área para el tratamiento y la disposición final, los costos y el establecimiento de la tarifa de aseo.

^6 Para efectos de cálculo se recomienda tomar como mínimo la producción y recolección de una semana, ya que esta varía de acuerdo con las distintas actividades de la población. En lo posible, la cantidad de basura se determinará pesando todos los camiones durante una semana o estimando su volumen.
La producción de RSM está dada por la relación (cf. anexo 4, ejemplo 1):

\[DS_d = \text{Pob} \times \text{ppc} \]

\[\text{ donde:} \]
\[DS_d = \text{Cantidad de RSM producidos por día (kg/día)} \]
\[\text{Pob} = \text{Población total (habitantes)} \]
\[\text{ppc} = \text{Producción per cápita (kg/hab-día)} \]

? **Proyección de la producción total**

La producción anual de RSM debe ser estimada con base en las proyecciones de la población y la producción per cápita.

Como ya se mencionó en este capítulo, se puede calcular la proyección de la población mediante métodos matemáticos, pero en lo que se refiere al crecimiento de la ppc difícilmente se encuentran cifras que den idea de cómo puede variar anualmente. No obstante, para obviar este punto y sabiendo que con el desarrollo y el crecimiento urbano y comercial de la población los índices de producción aumentan, se recomienda calcular la producción per cápita total (cuadro 5.2) para cada año, con un incremento de entre 0,5 y 1% anual.

5.1.3 **Características de los RSM en las pequeñas poblaciones**

Los parámetros más importantes que debemos conocer para el manejo adecuado de los RSM que se producen en una población son la producción y sus características específicas (origen, composición física y densidad).

? **Origen o procedencia**

Los RSM en las áreas urbanas de las pequeñas poblaciones se pueden clasificar según su procedencia: residencial, comercial, industrial, barrido de vías y áreas públicas, mercado e institucional (cuadro 5.2).

a) **Sector residencial**

La basura residencial (o desechos sólidos domésticos) está compuesta principalmente de papel, cartón, latas, plásticos, vidrios, trapos y materia orgánica.

En los estudios realizados sobre producción de basura en pequeñas localidades (menos de 40.000 habitantes), no se han encontrado grandes diferencias entre los diferentes estratos socioeconómicos de la población.
Cuadro 5.1
Volumen y área requerida para el relleno sanitario

<table>
<thead>
<tr>
<th>Año</th>
<th>Población (hab)</th>
<th>ppc kg/hab/día</th>
<th>Cantidad de residuos sólidos</th>
<th>Volumen (m3)</th>
<th>Relleno sanitario</th>
<th>Área requerida (m2)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Diaria (kg/día)</td>
<td>Anual t/año</td>
<td>Acumulado (t)</td>
<td>Residuos solídos compactados</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Diaria (m3)</td>
<td>Anual (m3)</td>
<td>Diaria (m3)</td>
<td>Anual (m3)</td>
</tr>
<tr>
<td>(1)</td>
<td>(2)</td>
<td></td>
<td>(3)</td>
<td>(4)</td>
<td>(5)</td>
<td>(6)</td>
</tr>
<tr>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(3) = (1) x (2) Población x ppc.
(6) = [(3) x 7/6] / D$_c$ Los residuos sólidos producidos en una semana son llevados al relleno durante los días de recolección. Normalmente entre el lunes y sábado (7 días de producción/ 6 días de recolección).
(8) = (6) x 0.2 Material de cobertura = entre 20 y 25% del volumen de residuos compactados.
(11) = (9) + (10) El volumen del relleno sanitario V_{rs} = material de cobertura + volumen de residuos estabilizados.
(13) = (12) / H Área por rellenar A_R = volumen acumulado del relleno / H
H = altura del relleno estimada
(14) = (13) x F Área total A_T = área por rellenar x F
F = Factor para estimar el área adicional (entre 20 y 30%)

RELLENO SANITARIO MANUAL

DENSIDAD DE LA BASURA (kg/m3)

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>S</td>
<td>200</td>
<td>300</td>
</tr>
<tr>
<td>C</td>
<td>400</td>
<td>500</td>
</tr>
<tr>
<td>E</td>
<td>500</td>
<td>600</td>
</tr>
</tbody>
</table>
b) **Sector comercial**

Con algunas excepciones (poblaciones en las zonas de frontera y sitios turísticos), el comercio no representa altos índices en la producción de RSM, dado que en estas localidades no está muy desarrollado y la actividad comercial suele combinarse con la vivienda.

La composición de los desechos de la actividad comercial en estas comunidades es similar a la del tipo residencial, si bien predominan los materiales de empaque (papel, cartón, vidrio, plástico, textil y madera).

c) **Sector industrial**

La actividad industrial suele ser baja y de tipo artesanal, compatible con el uso residencial, de manera que es de esperar que sus desechos sólidos no presenten características especiales. Por ende, salvo pocas excepciones, no es significativa para el análisis de estas pequeñas poblaciones.

d) **Plaza de mercado**

La zona de mercado presenta un carácter más definido, dado que allí se concentran los expendios de carne, pescado, vegetales, frutas, abarrotes y otros, lo que indica que gran parte de los residuos es de materia orgánica y solo una muy pequeña es material de empaque; para estos desechos puede ser recomendable la producción de compostaje con métodos manuales.

e) **Barrido de vías y áreas públicas**

El servicio de barrido de vías y limpieza de áreas públicas —tales como el parque principal, los alrededores de la plaza de mercado, ferias y playas— contribuyen a la producción de desechos. Estos están compuestos básicamente de hojas, hierba, cáscaras de frutas, además de papeles, plásticos, latas, vidrios, palos y un alto contenido de tierra.

f) **Sector institucional**

Para el caso de establecimientos especiales como escuelas y colegios, se puede considerar, sin gran margen de error, que la generación de desechos sólidos no es muy significativa con respecto al resto; su composición es similar a las anteriores.

Los hospitales o centros de salud en estas poblaciones suelen ser instituciones clasificadas como del primer nivel de atención, poco especializadas y con un mínimo número de camas, aunque en algunos casos son de mediana magnitud. De ahí que no
incidan de manera significativa en la generación total de residuos sólidos. Sin embargo, en cuanto al tipo de desechos que producen, es necesario distinguir entre los clasificados como de origen residencial (limpieza, cocina, basura común) y los originados por sus actividades específicas y que son potencialmente infecciosos: materiales punzocortantes y de curación, vísceras provenientes del quirófano, etc., todos estos llamados residuos biológico-infecciosos, para los cuales se sugiere un manejo, un tratamiento y una disposición final especiales.

En el centro de salud, estos residuos deben ser separados y presentados en bolsas cerradas de polietileno de color rojo; también se debe evitar el derrame de su contenido y su contacto con el personal de recolección, aun cuando esté provisto de guantes y ropa adecuada. Su tratamiento y disposición final pueden realizarse mediante la incineración o el enterramiento en una fosa especial que esté dentro del establecimiento. En este último caso, dicha fosa debe ser de suelo arcilloso, cuyo fondo se encuentre por lo menos a un metro del manto freático para evitar el contacto con el agua.

De ser recogidos por la municipalidad, deben tomarse las debidas medidas de protección y su disposición final podrá realizarse en el relleno sanitario manual, de preferencia colocándolos apenas lleguen en una celda especial, similar a la indicada

<table>
<thead>
<tr>
<th>Año</th>
<th>Población habitantes</th>
<th>ppc Promedio total kg/hab/día</th>
<th>Residencial</th>
<th>Comercial</th>
<th>Mercado</th>
<th>Industrial</th>
<th>Barrido</th>
<th>Otros</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Cuadro 5.2
Proyección de la producción y procedencia de los desechos sólidos municipales (t/año)
en el anexo 6 o, en su defecto, al pie del talud o en la parte inferior de la celda, para de inmediato cubrirlos con tierra y el resto de los residuos sólidos.

Composición física y química

La composición física de los RSM en la Región está caracterizada por su alto porcentaje de materia orgánica (entre 50 y 70% del total de residuos), lo que se traduce en un mayor contenido de humedad con valores que fluctúan entre 35 y 55%; el resto es papel, cartón, vidrio, metales, plásticos y material inerte, entre otros.

Los RSM de las comunidades pequeñas no presentan diferencias significativas en su composición física que ameriten gastos en estudios exhaustivos, de tal manera que en general bien podrán ser asimilados como desechos domésticos.

En lo que nos concierne, la composición física de los RSM de estas poblaciones tiene importancia para evaluar la factibilidad de establecer programas de reciclaje y tratamiento, dado que la composición química no reviste mayor atención y que el método de disposición final se realiza a través de la técnica del relleno sanitario, con el que se procurará minimizar la generación de lixiviado.

Densidad

La densidad o el peso volumétrico de los RSM es otro parámetro importante para el diseño del sistema de disposición final de residuos. En la Región, se tienen valores de entre 200 y 300 kilogramos por metro cúbico para la basura suelta, es decir, en el recipiente; tales valores son mayores que los que presentan los países industrializados.

Para calcular las dimensiones de la celda diaria y el volumen del relleno, se pueden estimar las siguientes densidades:

Cuadro 5.3

<table>
<thead>
<tr>
<th>Diseño</th>
<th>Densidad kg/m³</th>
</tr>
</thead>
<tbody>
<tr>
<td>Celda diaria (basura recién compactada manualmente)</td>
<td>400 - 500</td>
</tr>
<tr>
<td>Volumen del relleno (basura estabilizada en el relleno manual)</td>
<td>500 - 600</td>
</tr>
</tbody>
</table>
Estas densidades se alcanzan con la compactación homogénea y, a medida que se estabiliza el relleno, con todo lo que incide en la estabilidad y vida útil del sitio.

El aumento de la densidad del relleno sanitario manual se logra especialmente mediante:

- El apisonado manual, con el uso diario del rodillo o los pisones de mano.
- El tránsito del vehículo recolector por encima de las celdas ya conformadas.
- La separación y recuperación de papel, cartón, plástico, vidrio, chatarra, madera y otros materiales voluminosos. Con la práctica del reciclaje se disponen menos RSM en el relleno y, en consecuencia, se aumenta su vida útil.
- Otros mecanismos que aumentan la densidad de los desechos sólidos son: el proceso de descomposición de la materia orgánica y el peso propio de las capas o celdas superiores que producen mayor carga y, obviamente, disminuyen su volumen.

5.1.4 Características del terreno

La geología y características específicas del suelo del terreno son algunos de los factores más importantes que hay que tener en cuenta a la hora de seleccionar el sitio. Gracias a estos se puede obtener información acerca de posibles desplazamientos de las infiltraciones de agua y de una eventual contaminación de las aguas superficiales y subterráneas. Al mismo tiempo, el estudio del suelo permite evaluar la estabilidad del terreno y la localización y calidad del banco de material de cobertura.

Sin lugar a dudas, en los proyectos de relleno sanitario para las grandes ciudades estos análisis tienen una importancia capital y deben ser una exigencia básica en cualquier estudio; pero para el caso de comunidades muy pequeñas, no es necesario ser demasiado rigurosos si, como ya se dijo, se considera la reducida magnitud de las obras y el tipo de residuos que generan. En lo posible, se debe recurrir a los servicios de un geólogo o de otro profesional con conocimientos en estos temas.

Los estudios de campo para poblaciones con menos de 5.000 habitantes pueden consistir solo en simples pruebas de percolación y análisis del suelo.

A continuación, se hará una breve descripción de los principales parámetros que se deben tener en cuenta en el análisis y la evaluación cualquier terreno:

- **Tipo de suelo**: un relleno sanitario debe estar localizado de preferencia sobre un terreno cuya base sean suelos areno-limo-arcillosos (arena gruesa gredosa, greda franco-arcillosa); también son adecuados los limo-arcillosos (franco-limoso pesado, franco-limo-arcilloso, arcillo-limoso liviano) y los arcillo-limosos (arcillo-
limoso pesado y arcilloso). Es mejor evitar los terrenos areno-limosos (francoarenosos) porque son muy permeables.

Permeabilidad del suelo: es la mayor o menor facilidad con que la percolación del agua ocurre a través de un suelo. El coeficiente de permeabilidad (k) es un indicador de la mayor o menor dificultad con que un suelo resiste a la percolación del agua a través de sus poros. En otras palabras, es la velocidad con la que el agua atraviesa los diferentes tipos de suelo.

Para ilustrar mejor lo anterior, presentamos la figura 5.1, donde se aprecia el tipo de suelo y su relación con el coeficiente de permeabilidad.

<table>
<thead>
<tr>
<th>Coeficiente de permeabilidad k (cm/s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Escala logarítmica)</td>
</tr>
<tr>
<td>k (cm/s)</td>
</tr>
<tr>
<td>10^{-2}</td>
</tr>
<tr>
<td>10^{-1}</td>
</tr>
<tr>
<td>10^{0}</td>
</tr>
<tr>
<td>10^{1}</td>
</tr>
<tr>
<td>10^{2}</td>
</tr>
<tr>
<td>10^{3}</td>
</tr>
<tr>
<td>10^{4}</td>
</tr>
<tr>
<td>10^{5}</td>
</tr>
<tr>
<td>10^{6}</td>
</tr>
<tr>
<td>10^{7}</td>
</tr>
<tr>
<td>10^{8}</td>
</tr>
<tr>
<td>10^{9}</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Drenaje</th>
<th>Bueno</th>
<th>Malo</th>
<th>Prácticamente impermeable</th>
</tr>
</thead>
<tbody>
<tr>
<td>Relleno sanitario</td>
<td>Pésimo</td>
<td>Bueno</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Tipo de suelo</th>
<th>Grava gruesa (cascajo)</th>
<th>Arena limpia, arena mezclada con grava</th>
<th>Arena muy fina, suelos orgánicos e inorgánicos, mezcla de limo-arenoso y arcilla</th>
<th>Suelo impermeable modificado por efecto de la vegetación y la intemperización</th>
</tr>
</thead>
</table>

Figura 5.1
Relación entre el tipo de suelo, el coeficiente de permeabilidad y su aceptación para drenaje y relleno sanitario

El coeficiente de permeabilidad k de los suelos puede ser determinado en el campo, si es que se desea saber con certeza si ahí se puede construir o no un relleno sanitario (apéndice A).

Profundidad del nivel freático: tiene que ver con la altura de la tabla de aguas o la altura dominante del nivel freático. Se deberán preferir los terrenos bien drenados y con la tabla de aguas a más de un metro de profundidad durante todo el año. Los terrenos pobremente drenados —o sea, aquellos que en la tabla de aguas se mantienen la mayor parte del año por debajo de un metro—
se deben drenar de manera artificial. En estos casos es mejor descartarlos, sobre todo los que permanecen inundados durante largos periodos.

Disponibilidad del material de cobertura: los terrenos planos, que cuentan con un suelo limo-arcilloso y el nivel freático a una profundidad tal que no haya posibilidad de contaminar las aguas subterráneas por la disposición de residuos, pueden ofrecer una buena cantidad de material de cobertura, en especial si se decide usar el relleno en zanjas. Por el contrario, si el terreno tiene un suelo arenoso o si el nivel freático está a poca profundidad (a menos de un metro), primero se tendrá que impermeabilizar el terreno y, luego, acarrear el material de cobertura desde otro sitio, lo que elevará enormemente los costos, de ahí que sería preferible descartarlo.

Las hondonadas o los terrenos ondulados pueden brindar buenas posibilidades de material de cobertura, al nivelar el terreno y hacer los cortes en las laderas de las depresiones.

5.1.5 Condiciones climatológicas

La precipitación pluvial, la evaporación, la temperatura y la dirección del viento son los principales datos climatológicos que se deben recopilar para establecer las especificaciones de diseño de la infraestructura del relleno sanitario y tener un mejor conocimiento de las condiciones a las que estará sometida la obra en general (figura 5.2).

![Figura 5.2](image_url)

Condiciones climatológicas e hidrológicas favorables
En el capítulo 4, numeral 4.4, concerniente a la selección del sitio, se hizo referencia a la necesidad de tener presente la dirección del viento y, sobre todo, los registros de precipitación pluvial de la zona para el diseño de los diferentes sistemas de drenaje de agua y lixiviado.

5.1.6 Identificación de las normas vigentes

Otro aspecto que quien va a diseñar un relleno sanitario no debe pasar por alto es la consulta de las normas vigentes, tanto para el diseño y la construcción del relleno y de las obras de infraestructura como para tener en cuenta las obligaciones con la autoridad ambiental en relación con las condiciones y restricciones que debe tener el proyecto a fin de evitar o mitigar posibles efectos negativos debidos a la construcción y operación de la obra.

Hay que advertir, no obstante, que en estos casos las autoridades locales, ambientales y de salud deben tener presente que se trata de un pequeño proyecto de saneamiento y no de una obra de gran envergadura destinada a una ciudad. En la Región viene ocurriendo que los funcionarios de estas dependencias de vigilancia y control —los cuales ignoran o no tienen en cuenta las enormes diferencias entre ambos tipos de proyectos— se limitan a entregar al consultor o al técnico encargado de los estudios y diseños los mismos términos de referencia que ya tienen preparados para los rellenos sanitarios de los grandes conglomerados urbanos. Con esto, simplemente se paraliza la ejecución del relleno sanitario manual debido a la falta de recursos e incluso de información.

La adopción de las normas de los países industrializados puede constituir un obstáculo para dinamizar los procesos en los países en vías de desarrollo, o bien impedir el avance de la gestión de RSM, si dichas normas no se adaptan a las condiciones locales.

5.2 Cálculo del volumen necesario para el relleno sanitario

Los requerimientos de espacio del relleno sanitario están en función de:

- La producción total de RSM.
- La cobertura de recolección (la condición crítica de diseño es recibir el 100% de los residuos generados).
- La densidad de los RSM estabilizados en el relleno sanitario manual.
- La cantidad del material de cobertura (20-25%) del volumen compactado de RSM.
5.2.1 Volumen de residuos sólidos

Con los dos primeros parámetros se tiene el volumen diario y anual de RSM compactados y estabilizados que se requiere disponer (cuadro 5.1, columnas 6, 8 y 10, respectivamente), es decir:

\[V_{\text{diario}} = \frac{D_{C_p}}{D_{\text{rsm}}} \quad [5-5] \]

\[V_{\text{anual compactado}} = V_{\text{diario}} \times 365 \quad [5-6] \]

donde:

- \(V_{\text{diario}} \) = Volumen de RSM por disponer en un día (m\(^3\)/día)
- \(V_{\text{anual}} \) = Volumen de RSM en un año (m\(^3\)/año)
- \(D_{C_p} \) = Cantidad de RSM producidos (kg/día)
- 365 = Equivalente a un año (días)
- \(D_{\text{rsm}} \) = Densidad de los RSM recién compactados (400-500 kg/m\(^3\)) y del relleno estabilizado (500-600 kg/m\(^3\))

5.2.2 Volumen del material de cobertura

\[\text{m. c.} = V_{\text{anual compactado}} \times (0,20 \text{ ó } 0,25) \quad [5-7] \]

donde:

- \(\text{m. c.} \) = material de cobertura equivale al 20 a 25% del volumen de los desechos recién compactados.

5.2.3 Volumen del relleno sanitario

Con los resultados obtenidos de las formulas [5-6] y [5-7] se puede calcular el volumen del relleno sanitario para el primer año, así:

\[V_{\text{RS}} = V_{\text{anual estabilizado}} + \text{m. c.} \quad [5-8] \]

donde:

- \(V_{\text{RS}} \) = Volumen del relleno sanitario (m\(^3\)/año)
- \(\text{m. c.} \) = material de cobertura (20 a 25% del volumen recién compactado de RSM)
Los datos obtenidos se vacían en el cuadro 5.1, columna 11. Para conocer el volumen total ocupado durante la vida útil, se tiene la siguiente fórmula:

\[
V_{RSvu} = \sum_{i = 1}^{n} V_{RS}
\] \[5-9\]

donde:

- \(V_{RSvu}\) = Volumen relleno sanitario durante la vida útil (m³)
- \(n\) = Número de años

que serán los datos que aparecen en el cuadro 5.1, columna 12; es decir, los valores acumulados anualmente.

5.3 Cálculo del área requerida

Con el volumen se puede estimar el área requerida para la construcción del relleno sanitario, con la profundidad o altura que tendría el relleno. Esta solo se conocerá si se tiene una idea general de la topografía.

El relleno sanitario manual debe proyectarse para un mínimo de cinco años y un máximo de diez. Sin embargo, algunas veces es necesario diseñarlo para menos de cinco años si se considera la dificultad de encontrar terrenos disponibles. Este tiempo se llama *vida útil o periodo de diseño*.

El área requerida para la construcción de un relleno sanitario manual depende principalmente de factores como:

- cantidad de RSM que se deberá disponer;
- cantidad de material de cobertura;
- densidad de compactación de los RSM;
- profundidad o altura del relleno sanitario;
- áreas adicionales para obras complementarias.

A partir de la ecuación 5-8 podremos estimar las necesidades de área así (cuadro 5.1, columna 13):

\[
A_{RS} = \frac{V_{RS}}{h_{RS}}
\] \[5-10\]
donde:

\[V_{RS} = \text{volumen de relleno sanitario (m}^3/\text{año}) \]

\[A_{RS} = \text{área por rellenar sucesivamente (m}^2) \]

\[h_{RS} = \text{altura o profundidad media del relleno sanitario (m)} \]

y el área total requerida (cuadro 5.1, columna 14) será:

\[A_T = F \times A_{RS} \]

donde:

\[A_T = \text{Área total requerida (m}^2) \]

\[F = \text{Factor de aumento del área adicional requerida para las vías de penetración, áreas de retiro a linderos, caseta para portería e instalaciones sanitarias, patio de maniobras, etc. Este es entre 20-40% del área que se deberá rellenar.} \]

En el cuadro 5.1 se incorporan los parámetros mencionados para el cálculo del volumen del relleno sanitario. Se estimará el área para cada sitio alternativo cuando se conozca la profundidad promedio del relleno (véase el apéndice D, ejemplo 2).

5.4 Diseño de taludes

5.4.1 Obras de tierra

Los rellenos sanitarios para residuos urbanos son obras de ingeniería construidas en el suelo y muchas de sus estructuras o partes son ejecutadas con tierra.

Entre las principales obras de un relleno figuran: construcción de terraplenes o diques de contención, construcción de bermas de equilibrio, excavación de trincheras, excavación de canales de drenaje, construcción de accesos en tierra y de capas de tierra compactada para impermeabilización o protección.

En las etapas de construcción y operación, uno de los principales aspectos que se debe tener en cuenta para los rellenos sanitarios manuales es la estabilidad de los taludes de tierra y de los terraplenes de basura.

5.4.2 Definición de talud

Se denomina talud a la superficie que delimita la explanación lateralmente. En cortes, el talud está comprendido entre el punto de chaflán y el fondo del canal. En
terraplenes, el talud está comprendido entre el chaflán (pata del terraplén) y el borde de la berma (figura 5.3).

La convención usada para definir el talud es en la forma de "S" unidades en sentido horizontal por una unidad en sentido vertical.

5.4.3 Diseño de taludes

7 Taludes en corte

Teniendo en cuenta que para la construcción de un relleno sanitario manual se recomienda que el terreno sea de un material relativamente impermeable (arena fina mezclada con limo, arcilla) y que las alturas del corte (H) sean menores de 5 metros se puede establecer como norma que no se requieren estudios de estabilidad para definir el talud más apropiado.
Para un corte de baja altura se puede recomendar un talud único; para alturas mayores podrán requerirse dos taludes diversos; en algunos casos, se sugerirá la construcción de bermas o banquetas intermedias (figura 5.4).

A continuación se presenta una guía que puede ser utilizada sobre la base de la experiencia de varios países con respecto a la definición de los taludes de corte (cuadro 5.3).

Cuadro 5.4
Taludes recomendados en corte

<table>
<thead>
<tr>
<th>Tipo de material</th>
<th>Talud recomendable S altura del corte H (m) hasta 5 m</th>
<th>Observaciones</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Arenas limosas y limos compactos</td>
<td>½</td>
<td>(k = 10^{-7} \text{ cm/s}). Descopetar 1:1 la parte superior más intemperizada. Si son materiales fácilmente erosionables, deberá proyectarse talud 1:1</td>
</tr>
<tr>
<td>2. Arenas limosas, limo poco compacto</td>
<td>¼</td>
<td>(k = 10^{-7} \text{ cm/s}) contracuneta impermeable. Descopetar 1,5:1 la parte más intemperizada</td>
</tr>
<tr>
<td>3. Arenas limosas y limos muy compactos</td>
<td>¼</td>
<td>(k = 10^{-7} \text{ cm/s}). Descopetar la parte superior suelta</td>
</tr>
<tr>
<td>4. Arcillas poco arenosas, firmes y homogéneas</td>
<td>½</td>
<td>(k = 10^{-8} \text{ cm/s}). Descopetar 1:1 la parte intemperizada. Si existe flujo de agua, construir subdrenaje</td>
</tr>
<tr>
<td>5. Arcillas blandas expansivas</td>
<td>1</td>
<td>(k = 10^{-8} \text{ cm/s})</td>
</tr>
</tbody>
</table>

Fuente: Tomado y adaptado de Secretaría de Obras Públicas, Departamento de Antioquia, Colombia.

Taludes en terraplén

En terraplenes, dado el control que se tiene en la extracción, selección y colocación del material que forma el relleno (lleno en tierra), el valor que comúnmente se usa en taludes es el 1.5:1.

En relación con los taludes de basura para la conformación de los terraplenes en el relleno sanitario manual, se recomienda 2:1 ó 3:1. Se garantizará su estabilidad con una buena compactación manual de las basuras y la construcción de taludes compuestos con berma intermedia.
5.5 Selección del método de relleno

Como ya se mencionó, el diseño del relleno sanitario depende del método adoptado, trinchera, área o su combinación, de acuerdo con las condiciones topográficas del sitio, las características del suelo y la profundidad del nivel freático.
El diseño debe presentar de la siguiente manera los planos que orienten la construcción del relleno sanitario:

? Conformación del terreno original

La conformación del terreno original es obtenida a partir del levantamiento topográfico del sitio donde se construirá el relleno sanitario, y es necesaria para elaborar los cálculos y el diseño de la obra (figura 5.5).

Figura 5.5
Conformación del terreno original
Configuración inicial del desplante o suelo de soporte

Generalmente, el sitio seleccionado debe ser preparado, tanto para construir las obras de infraestructura necesarias como para brindar una adecuada base de soporte al relleno sanitario y obtener el material de cobertura del propio terreno. Estos cambios se presentan en un plano topográfico a fin de orientar al constructor en el movimiento de tierras (figura 5.6).
Es la conformación del terreno una vez que se termine su vida útil. Es importante representarla en un plano topográfico para presentar los niveles máximos que alcanzará la obra de acuerdo con la visión del proyectista (figura 5.7).
Configuraciones parciales del relleno

La(s) configuración(es) parcial(es) del relleno representa(n) el avance de la construcción y sirve(n) de guía al constructor para los controles correspondientes.

5.5.1 Método de zanja o trinchera

Dado que con frecuencia estas pequeñas poblaciones no cuentan con un tractor de oruga o una retroexcavadora, se recomienda su arriendo o préstamo para la excavación periódica de las zanjas, que deberán tener una vida útil de 60 a 90 días. De esta forma, se evitará el empleo constante de la maquinaria. Por ello se deberá planificar la excavación de las zanjas para todo el año, dependiendo de la disponibilidad del equipo, cuyos costos de renta deben ser incluidos en el presupuesto general.

Antes de que se complete el periodo de vida útil de la zanja, se debe contar con el equipo para proceder a la excavación de una nueva zanja, con el objeto de poder realizar la disposición sanitaria final de los RSM y proteger el ambiente. De lo contrario, el servicio se vería interrumpido y el lugar podría convertirse en un botadero a cielo abierto.

Orientación para la localización de las zanjas

Cuando se trata de terrenos que no son parejos —por ejemplo, con pendientes de 5% y en varias direcciones— y si se busca optimizar el uso del terreno y facilitar

Figura 5.8
Localización y proceso de excavación de las zanjas en el tiempo y combinación con el método de área
las excavaciones, se debe tratar que las zanjas sigan las curvas de nivel. De esta manera, se logra un mejor manejo de la tierra excavada, tanto para su almacenamiento a un lado de la zanja como para su utilización posterior como material de cobertura. Por lo tanto, se recomienda realizar la apertura de las zanjas con excavaciones en la parte inferior del terreno para luego ir ascendiendo a medida que se van llenando (figura 5.8).

Ante la dificultad de adquirir nuevos terrenos, se recomienda combinar este método de relleno en zanja con el de área; es decir, levantando el terreno unos metros por encima del nivel original para aprovechar así los excedentes de tierra como cobertura diaria y final de la nueva etapa del relleno. A veces pueden servir como una especie de cerco alrededor del terreno, que impida la visibilidad desde el exterior (capítulo 6, numeral 6.4.2).

Figura 5.9
Distribución de zanjas en el terreno
Un programa de uso del suelo para la apertura de trincheras en el tiempo y el manejo de excedentes de la excavación, que puede ser hasta de 50%, son fundamentales para que la gestión de la obra sea un éxito.

Volumen de la zanja

A partir de la vida útil de la zanja, se calcula el volumen de excavación y el tiempo requerido de la maquinaria con la siguiente fórmula (véase el apéndice D, ejemplo 3):

\[V_z = \frac{t \times D\text{Sr} \times \text{m. c.}}{D_{\text{rsm}}} \]

Donde:
- \(V_z \) = Volumen de la zanja (m\(^3\))
- \(t \) = Tiempo de vida útil (días)
- \(D\text{Sr} \) = Cantidad de RSM recolectados (kg/día)
- \(\text{m. c.} \) = Material de cobertura (20-25% del volumen compactado)
- \(D_{\text{rsm}} \) = Densidad de los RSM en el relleno (kg/m\(^3\))

Dimensiones de la zanja

Para efectos de la operación manual, las dimensiones de la zanja estarán limitadas por:

- La profundidad de la zanja, que debe ser de 2 a 4 metros de acuerdo con el nivel freático, tipo de suelo y de equipo y costos de excavación.
- El ancho de la zanja, que debe medir entre 3 y 6 metros (ancho del equipo). Esto es conveniente para evitar el acarreo de larga distancia de la basura y el material de cobertura, lo cual implica mejores rendimientos de trabajo. Así, la operación puede ser planeada dejando un lado para acumular la tierra y el otro para la descarga de los RSM. Dependiendo del grado de compactación y del clima, se puede usar la superficie de una zanja terminada para la descarga de los residuos.
- El largo está condicionado al tiempo de duración o vida útil de la zanja. Entonces se tiene que:

\[l = \frac{V_z}{a \times h_z} \]

[5-13]
donde:

1 = Largo o longitud de la zanja (m)
V_z = Volumen de la zanja (m³)
a = Ancho (m)
h_z = Profundidad (m)

? Tiempo de la maquinaria

El tiempo requerido para la excavación de la zanja y el movimiento de tierra en general dependerá mucho del material del suelo, del tipo y la potencia de la máquina, de su sistema de tracción (ya sea de ruedas o de orugas) y de la pericia del conductor (veáse el apéndice D, ejemplo 3).

\[t_{\text{exc}} = \frac{V_z}{R \times J} \] \[5-14\]

donde:

t_{exc} = Tiempo de la maquinaria para la excavación de la zanja (días)
V_z = Volumen de la zanja (m³)
R = Rendimiento de excavación del equipo pesado (m³/hora)
J = Jornada de trabajo diario (horas/día)

? Vida útil del terreno

Del cuadro 5.1, columna 13, podemos conocer el área requerida solo si se conoce la profundidad promedio del relleno sanitario. Sin embargo, en la práctica nos encontramos con un terreno al que hay que calcularle la vida útil (véase el apéndice D, ejemplo 4).

En lo que respecta al método de zanja, una vez calculado su volumen, suponemos un factor para las áreas adicionales (separación entre zanjas⁷, vías de circulación, aislamiento, etc.) y luego se estima el número de zanjas que se podrían excavar en el terreno. Así:

\[n = \frac{A_t}{F \times A_z} \] \[5-15\]

⁷ Se recomienda que la separación entre zanjas sea de un metro para darle más estabilidad. Esta separación depende del tipo de suelo y de la forma de la trinchera (cuadrada o trapezoidal), entre otros factores.
donde:

\[n = \text{Número de zanjas} \]
\[A_t = \text{Área total del terreno (m}^2\text{)} \]
\[F = \text{Factor para áreas adicionales de 1.2 a 1.4 (20-40\%)} \]
\[A_z = \text{Área de la zanja (m}^2\text{)} \]

Entonces la vida útil estará dada por:

\[V_u = \frac{(t_z \times n)}{365} \quad [5-16] \]

donde:

\[V_u = \text{Vida útil del terreno (años)} \]
\[t_z = \text{tiempo de servicio de la zanja (días)} \]

5.5.2 Método de área

Como ya se mencionó, el método de área se emplea para construir el relleno sanitario sobre la superficie del terreno o para llenar depresiones. En el numeral 5.6 se presentan varias metodologías para evaluar la capacidad volumétrica del sitio.

5.6 Cálculo de la capacidad volumétrica del sitio

La capacidad volumétrica del sitio es el volumen total disponible del terreno para recibir y almacenar la basura y el material de cobertura que conforman el relleno sanitario. En otras palabras, es el volumen comprendido entre la superficie de desplante y la superficie final del relleno, para lo cual es indispensable determinar la capacidad volumétrica del terreno.

En general, existen dos métodos para realizar este tipo de cálculo:

- Volúmenes de gran longitud y poca anchura.
- Volúmenes de gran extensión (extensos en ambas direcciones).

5.6.1 Volúmenes de gran longitud (alrededor de un eje)

Por lo general, el trabajo de campo en esta categoría de determinación de volúmenes comprende la obtención de secciones transversales a intervalos regulares

a lo largo de un eje del proyecto (poligonal). Primero se calculan las áreas de estas secciones y luego, usando la regla de Simpson para volúmenes o la del prismaide, puede calcularse el volumen del material que se deberá retirar o colocar.

Método 1. Cálculo del volumen por la regla de Simpson

Una vez calculada el área de las distintas secciones, puede hallarse el volumen del material contenido en el corte o relleno por medio de la regla de Simpson, que es la misma que se emplea para las áreas, aunque las áreas de las secciones reemplazan a las ordenadas en la fórmula (figura 5.10 y apéndice D, ejemplo 5).

\[
\text{Volumen} = \frac{d}{3} \left[A_1 + A_5 + 2 \times A_3 + 4(A_2 + A_4) \right] \text{m}^3 \quad [5-17]
\]

Si llamamos \(M \) a la sección media, el volumen por la regla de Simpson será:

\[
\text{Volumen} = \frac{1}{3} \left(\frac{d}{2} \right) [A_1 + A_2 + 2(\text{cero}) + 4M] \quad [5-18]
\]

\[
\text{Volumen} = \frac{d}{6} [A_1 + A_2 + 4M] \quad [5-19]
\]

Figura 5.10

Volumen longitudinal alrededor de un eje
La ecuación \([5-19]\) representa la regla del prismoide, que puede usarse para hallar el volumen de cualquier prismoide, siempre que se pueda conocer el área de la sección media (apéndice D, ejemplo 6).

Nota: el área \(M\) no es el promedio de las áreas \(A_1\) y \(A_2\).

Método 2. Cálculo del volumen por la regla del prismoide

El prismoide se define como un sólido que tiene dos caras planas y paralelas de forma regular o irregular, unidas por superficies planas o alabeadas, en las que se puedan trazar rectas desde una hasta la otra cara paralela. Algunos ejemplos de prismoides se presentan en la figura 5.11, cuya fórmula equivale a la \([5-19]\).

Figura 5.11

Prismoides

Para determinar su volumen por la regla de Simpson, es necesario dividir la figura de forma que resulte un número de secciones equidistantes; tres es el número menor que cumple esta condición.

Método 3. Volumen a partir de las áreas extremas

A partir del eje del proyecto y de la nivelación por franjas de un terreno, se puede calcular el volumen entre dos secciones transversales consecutivas, multiplicando el promedio de las áreas de las secciones por la distancia que las separa (para estar más cerca de la realidad, se recomienda tramos de 20 metros) (figura 5.12).
El volumen entre las secciones A1 y A2 está dado por:

\[
Volumen = \frac{(A_1 + A_2) \times d}{2}
\] \[5-20\]

donde:

\[
A_1 \text{ y } A_2 = \text{Áreas de las secciones transversales (m}^2\text{)}
\]

\[
d = \text{Distancia entre las secciones } A_1 \text{ y } A_2
\]

Esta fórmula será más precisa a medida que \(A_1\) y \(A_2\) tiendan a ser iguales. En general, la precisión de este método es más que suficiente, puesto que se supone que el terreno será nivelado uniformemente entre las dos secciones, aunque se sabe que el volumen real es un tanto diferente (apéndice D, ejemplo 7).

Figura 5.12
Volumen de un zanjón

5.6.2 Volúmenes de gran extensión

Método 1. De la retícula

Cuando se trata de hallar el volumen de un terreno de gran extensión y poca profundidad, el trabajo de campo consiste en cubrir el área de la superficie de desplante con una retícula de cuadros y obtener los niveles de sus vértices. El volumen total se puede calcular como la suma de volúmenes de todos los prismoides que tienen como área transversal un cuadro de la retícula y como altura la distancia a la superficie final del relleno. Esta altura estará dada por el promedio de las distancias entre la superficie de la configuración final del relleno y los vértices del cuadrado. Es decir, que si las elevaciones de los vértices de un cuadro son \(e_1, e_2, e_3\) y \(e_4\), la elevación de superficie
final en este punto es \(e_f \), y el área de cada cuadrado de la retícula es \(A \). Así, el volumen sería:

\[
V_i = A(e_f - (e_1 + e_2 + e_3 + e_4) / 4)
\]

El grado de precisión que se obtenga será mayor mientras más pequeños sean los cuadrados de la retícula (apéndice D, ejemplo 8).

Método 2. A partir de las curvas de nivel

Consiste en determinar el volumen existente entre los planos horizontales del terreno, para lo cual es necesario calcular las áreas, luego promediárlas y multiplicarlas por la diferencia de altura que las separa. Se parte de la ecuación [5-20].

\[
V = \frac{(A_1 + A_2)}{2} \cdot ? h
\]

Mientras más pequeño es el incremento \(\cdot h \), mayor será la precisión del método. Además, será más fácil de usar si se tiene el levantamiento topográfico con curvas de nivel cada metro y si se utiliza un planímetro para el cálculo de las áreas. Este es el método más común en el caso de grandes rellenos sanitarios.

donde:

- \(V \) = Volumen entre dos curvas de nivel (m³)
- \(A_1 \) y \(A_2 \) = Áreas de los planos horizontales (m²)
- \(\cdot h \) = Diferencia de altura entre los planos (m)

Por tanto, la capacidad volumétrica del sitio está dada generalmente por la siguiente ecuación:

\[
V = \frac{(A_1 + A_2)}{2} \cdot ? h_1 + \frac{(A_2 + A_3)}{2} \cdot ? h_2 + \frac{(A_4 + A_5)}{2} \cdot ? h_3 + ... [5-23]
\]

Cuando las áreas tomadas son equidistantes entre sí:

\[
V = \frac{? h}{2} A_1 + 2 \frac{n-1}{2} A_1 + A_n [5-24]
\]
Cuando las curvas de nivel están muy separadas, si se desea obtener cierta precisión al calcular el volumen se puede emplear la fórmula del prismoide. Al aplicar esta fórmula se debe considerar que los planos de las curvas de nivel dividen la depresión en una serie de prismoides. El volumen de cada uno de ellos puede hallarse mediante aplicaciones sucesivas de la regla del prismoide o, en casos favorables, empleando directamente la regla de Simpson.

Al utilizar la fórmula del prismoide se toman las áreas de tres curvas a la vez y la del centro se usa como sección media. La precisión del resultado depende sobre todo de la diferencia de nivel entre las curvas. En general, a menor intervalo, mayor exactitud en el volumen.

5.7 Cálculo de la vida útil

El volumen del relleno —o sea, el volumen comprendido entre las configuraciones inicial y final del terreno, calculadas mediante cualquiera de los métodos descritos anteriormente— nos dará el volumen total disponible. El cuadro 5.3 facilita la recolección de esta información. El cálculo de la vida útil se puede estimar así:
El volumen total disponible del terreno se compara con los valores del cuadro 5.1, columna 12 (donde aparecen los volúmenes acumulados del relleno) hasta encontrar un valor similar o ligeramente mayor. En la columna 0 de la misma línea se verá el número de años que equivalen a la vida útil del relleno.

5.8 Diseño del canal interceptor de aguas de escorrentía

Es importante estudiar la precipitación pluvial del lugar, con el fin de establecer las características de los drenajes perimetrales y las obras necesarias. Así se minimizará la producción del líquido lixiviado o percolado y se evitará la contaminación de las aguas.

Las aguas de lluvia que caen sobre las áreas vecinas al relleno sanitario suelen escurrirse hasta él, lo que dificulta la operación del relleno. Interceptar y desviar el escurrimiento de aguas de lluvia por medio de un canal perimetral fuera del relleno sanitario es, pues, un elemento fundamental de su infraestructura, que contribuirá a reducir el volumen del líquido percolado y mejorar las condiciones de operación. Es necesario construir un canal en tierra o suelo-cemento de forma trapezoidal y dimensionarlo teniendo en cuenta las condiciones de precipitación local, el área tributaria, las características del suelo, la vegetación y la pendiente del terreno (figuras 5.14 y 5.15).

Figura 5.14
Drenaje perimetral para desviar las aguas de lluvia y red para lixiviado
Para una pequeña cuenca se recomienda un canal con las dimensiones de la figura 5.16

Si por las características del lugar se requiere mayor precisión, se puede calcular el caudal que aporta la cuenca mediante el método racional y las dimensiones del canal según la siguiente fórmula.

\[
Q_p = \frac{K_i \times A_d}{3,6 \times 10^3}
\] \[5-25\]
donde:

\[Q_p = \text{Caudal que ingresa o máximo escurrimiento} \ [\text{m}^3/\text{seg}] \]
\[K = \text{Coeficiente de escurrimiento}. \]
\[i = \text{Intensidad de la lluvia para una duración igual} \ [\text{mm/hora}] \]
\[A_d = \text{Área de la cuenca} \ [\text{m}^2] \]
\[t_c = \text{Tiempo de concentración} \ [\text{min}] \]

El canal debe ser trazado por la curva de nivel más alta a la que llegará el borde del relleno sanitario y deberá garantizar una velocidad máxima promedio de 0,5 metros por segundo, que no provoque erosión excesiva; el tamaño de la sección del canal se podrá calcular usando la siguiente ecuación:

\[A = \frac{Q_p}{v} \] \[5-26\]

donde:

\[A = \text{Área de la sección de la zanja} \ [\text{m}^2] \]
\[v = \text{Velocidad máxima promedio} \ [\text{m/seg}] \]

Una vez hallada el área de la sección, se deciden las dimensiones, sobre la base de las recomendaciones anteriores.

5.9 Generación de lixiviado o percolado

5.9.1 Cálculo de la generación de lixiviado o percolado

El volumen de lixiviado o líquido percolado en un relleno sanitario depende de los siguientes factores:

- Precipitación pluvial en el área del relleno.
- Escorrentía superficial y/o infiltración subterránea.
- Evapotranspiración.
- Humedad natural de los RSM.
- Grado de compactación.
- Capacidad de campo (capacidad del suelo y de los RSM para retener humedad).

El volumen de lixiviado está fundamentalmente en función de la precipitación pluvial. No solo la escorrentía puede generarlo, también las lluvias que caen en el área del relleno hacen que su cantidad aumente, ya sea por la precipitación directa sobre los residuos depositados o por el aumento de infiltración a través de las grietas en el terreno.
Debido a las diferentes condiciones de operación y localización de cada relleno, las tasas esperadas pueden variar; de ahí que deban ser calculadas para cada caso en particular.

Dado que resulta difícil obtener información local sobre los datos climatológicos, se suelen utilizar coeficientes que correlacionan los factores antes mencionados con el fin de precisar el volumen de lixiviado producido.

El método suizo, por ejemplo, permite estimar de manera rápida y sencilla el caudal de lixiviado o líquido percolado mediante la ecuación:

\[Q = \frac{1}{t} P \times A \times K \]

\(Q \) = Caudal medio de lixiviado o líquido percolado (L/seg)
\(P \) = Precipitación media anual (mm/año)
\(A \) = Área superficial del relleno (m\(^2\))
\(t \) = Número de segundos en un año (31,536,000 seg/año)
\(K \) = Coeficiente que depende del grado de compactación de la basura, cuyos valores recomendados son los siguientes:

- Para rellenos débilmente compactados con peso específico de 0,4 a 0,7 t/m\(^3\), se estima una producción de lixiviado entre 25 y 50% (k = 0,25 a 0,50) de precipitación media anual correspondiente al área del relleno.
- Para rellenos fuertemente compactados con peso específico > 0,7 t/m\(^3\), se estima una generación de lixiviado entre 15 y 25% (k = 0,15 a 0,25) de la precipitación media anual correspondiente al área del relleno.

Sobre la base de las observaciones realizadas en varios rellenos pequeños, se puede afirmar que la generación de lixiviado se presenta fundamentalmente durante los periodos de lluvias y unos cuantos días después, y se interrumpe durante los periodos secos. Por tal razón, sería conveniente una adaptación de este método de cálculo para calcular la generación del lixiviado en función de la precipitación de los meses de lluvias y no de todo el año. Este criterio es importante a la hora de estimar la red de drenaje o almacenamiento de lixiviado para los rellenos sanitarios manuales.

Por lo tanto, se sugiere que partiendo de la ecuación [5-27], los registros de precipitación sean los del mes de máxima lluvia, expresados en mm/mes, con lo cual se consigue una buena aproximación al caudal generado:

\[Q_{lm} = P \times A \times K \]
donde:

\[
\begin{align*}
Q_{lm} &= \text{Caudal medio de lixiviado generado (m}^3/\text{mes)} \\
P_m &= \text{Precipitación máxima mensual (mm/mes)} \\
A &= \text{Área superficial del relleno}^9 \ (m^2) \\
K &= \text{Coeficiente que depende del grado de compactación de la basura} \\
1 \text{ m} &= 103 \text{ mm}
\end{align*}
\]

5.9.2 Diseño del sistema de drenaje de lixiviado

Dada la poca extensión superficial de los rellenos sanitarios manuales, en primer lugar se recomienda minimizar el ingreso de las aguas de lluvia no solo controlando las aguas de escorrentía por medio de canales interceptores a nivel perimetral. También se puede impedir que las lluvias caigan directamente sobre los terraplenes o zanjas con residuos si se construye un techo que funcione a manera de paraguas. De esta manera, la cantidad de lixiviado tiende a ser nula, con lo que se evita uno de los mayores problemas de este tipo de obras, sobre todo en las zonas lluviosas.

En segundo lugar, es conveniente construir un sistema de almacenamiento del lixiviado en forma de espina de pescado al interior del relleno, en concreto en la base que servirá de soporte de cada plataforma. El sistema puede estar conectado.

Evitar o minimizar el incremento de lixiviados, e impedir de paso la contaminación de las aguas de lluvia, es técnica y ambientalmente mejor y mucho más económico que diseñar e instalar sistemas de impermeabilización artificial, que construir sistemas de drenaje y, por supuesto, que llevar a cabo los tratamientos convencionales para estas aguas altamente contaminadas, en especial en los pequeños municipios.

Volumen de lixiviado

Si lo anterior no es suficiente, la mayor cantidad posible del lixiviado generado se almacenará en zanjas en el interior del relleno sanitario, a manera de falso fondo, y el resto se guardará en otras fuera del relleno para que se evapore. Progresivamente

9 Es importante tener en cuenta que el área es aquella en la que se depositarán los residuos; es decir, la de las plataformas o terraplenes y no la de el terreno del relleno. En otras palabras, es el área cubierta con residuos.
se construirán más zanjas según las necesidades locales. El volumen de lixiviado se estima con la siguiente ecuación:

\[V = Q \times t \]

[5-29]

donde:

- \(V \) = Volumen de lixiviado que será almacenado (m\(^3\))
- \(Q \) = Caudal medio de lixiviado o líquido percolado (m\(^3\)/mes)
- \(t \) = número máximo de meses con lluvias consecutivas (mes)

7. **Longitud del sistema de zanjas para el lixiviado**

Con el caudal obtenido se pueden calcular las dimensiones del sistema de zanjas para el almacenamiento de lixiviado, tal como se indica en la siguiente ecuación. Las zanjas deberán tener por lo menos un ancho de 0,6 metros por un metro de profundidad, siempre que el nivel freático esté un metro más abajo y el suelo tenga las condiciones de impermeabilidad recomendas anteriormente.

\[l = \frac{V}{a} \]

[5-30]

donde:

- \(l \) = Longitud de las zanjas de almacenamiento (m)
- \(V \) = Volumen de lixiviado que será almacenado durante los periodos de lluvia (m\(^3\))
- \(a \) = Área superficial de la zanja (m\(^2\))

5.10 **Monitoreo de la calidad del agua**

Es importante que antes, durante y después de construir un relleno sanitario se tome una serie de medidas relacionadas con la prevención de riesgos potenciales para la calidad del ambiente.

Si bien es una obra pequeña, un relleno sanitario manual debería cumplir algunas normas ambientales y de seguridad, sobre todo en lo que se refiere a las aguas superficiales y subterráneas. En este caso, convendría contar con pozos de monitoreo para prevenir cualquier riesgo de inundación.

No podemos olvidar que gran parte de los RSM de las pequeñas poblaciones son de origen doméstico, de ahí que las exigencias y controles ambientales también deben estar acordes con la magnitud del problema y los recursos disponibles. Además,
si se cuenta con un suelo limo-arcilloso, con un coeficiente de permeabilidad, \(k < 10^{-7} \) cm/seg, y si el espesor del suelo por encima del nivel freático es mayor de un metro, las probabilidades de contaminación de las aguas subterráneas disminuyen considerablemente.

5.10.1 Localización de los pozos de monitoreo

Los pozos de monitoreo deberán estar situados como mínimo a unos 10, 20 y 50 m del área del relleno y del drenaje exterior del líquido percolado; con unos 3 ó 4 pozos será suficiente. Para la toma de muestras del agua subterránea, si los mantos freáticos son superficiales (a unos 4 m), estos pozos podrán ser excavados manualmente (figura 5.17).

Figura 5.17
Localización y características de los pozos para el monitoreo de agua

5.10.2 Parámetros más representativos para el análisis de aguas y lixiviado

En el cuadro 5.5 se presentan, a manera de guía, los parámetros más representativos para el análisis de la calidad del agua subterránea y superficial, así como del lixiviado de un relleno sanitario.

Los análisis de laboratorio de las muestras de aguas subterráneas y superficiales cercanas se pueden hacer intensivos durante los primeros meses y menos frecuentes una vez que se registren valores constantes en los resultados.
Cuadro 5.5
Parámetros para medir la calidad del agua y lixiviado

<table>
<thead>
<tr>
<th>Parámetro</th>
<th>Agua superficial</th>
<th>Agua subterránea</th>
<th>Lixiviado</th>
</tr>
</thead>
<tbody>
<tr>
<td>pH</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>Demanda bioquímica de oxígeno (DBO) (mg/L)</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>Demanda química de oxígeno (DQO) (mg/L)</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>Temperatura (°C)</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>Hierro total (mg/L)</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>Carbono orgánico total (COT) (mg/L)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nitratos (mg/L)</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>Cloruros (mg/L)</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>Sulfatos (mg/L)</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>Recuento total de colonias (colonias/mL)</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>Conductividad (umhos/cm)</td>
<td></td>
<td></td>
<td>x</td>
</tr>
<tr>
<td>Sólidos suspendidos totales</td>
<td>x</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Metales pesados (Hg, Cd, Pb, Cr, Fe, Zn, Cu, Ni)</td>
<td></td>
<td></td>
<td>x</td>
</tr>
</tbody>
</table>

5.11 Cálculo de la celda diaria

Como se sabe, la celda diaria está conformada básicamente por los RSM y el material de cobertura y será dimensionada con el objeto de economizar tierra, sin perjuicio del recubrimiento y con el fin de que proporcione un frente de trabajo suficiente para la descarga y maniobra de los vehículos recolectores.

Las dimensiones y el volumen de la celda diaria dependen de factores tales como los siguientes:

- La cantidad diaria de RSM que se debe disponer.
- El grado de compactación.
- La altura de la celda más cómoda para el trabajo manual.
- El frente de trabajo necesario que permita la descarga de los vehículos de recolección.

Para la celda diaria se recomienda una altura que fluctúe entre 1 y 1,5 metros, esto debido a la baja compactación alcanzada por la operación manual y a fin de brindar una mayor estabilidad mecánica a la construcción de los terraplenes del relleno sanitario. A partir del volumen diario de desechos compactados y teniendo en cuenta...
las limitaciones de altura, se calculará el avance y el ancho de la celda, procuran-
do mantener un frente de trabajo lo más estrecho posible, con base en las ecuaciones [5-31] - [5-33].

5.11.1 Cantidad de RSM que se debe disponer

La cantidad de basura para diseñar la celda diaria se puede obtener de dos maneras:

A partir de la cantidad de basura producida diariamente, es decir:

\[
DS_{rs} = DS_p \times (7/d_{hab})
\] \[5-31\]

donde:
- \(DS_{rs}\) = Cantidad media diaria de RSM en el relleno sanitario (kg/día)
- \(DS_p\) = Cantidad de RSM producidos por día (kg/día)\(^{10}\)
- \(d_{hab}\) = Días hábiles o laborables en una semana (normalmente \(d_{hab} = 5 \text{ ó 6 días, y aún menos en los municipios más pequeños}\))

5.11.2 Volumen de la celda diaria

\[
V_c = \frac{DS_{rs}}{D_{rms}} \times \text{m. c.}
\] \[5-32\]

Donde:
- \(V_c\) = Volumen de la celda diaria (m\(^3\))
- \(D_{rms}\) = Densidad de los RSM recién compactados en el relleno sanitario manual, 400-500 kg/m\(^3\)
- m. c. = Material de cobertura (20-25%)

Debe notarse que la densidad usada para la basura recién compactada es menor que la de la basura estabilizada que se emplea para el cálculo del volumen.

\(^{10}\) Debe considerarse que el volumen diaria de RSM se incrementará cada año, y en consecuencia también lo hará el tamaño de la celda, lo que indica que puede ser necesario reevaluar anualmente la mano de obra requerida.
Cuadro 5.6
Capacidad volumétrica del sitio para el relleno sanitario

<table>
<thead>
<tr>
<th>Terraplén o plataforma</th>
<th>Elevation cota (m)</th>
<th>Área (m²)</th>
<th>Capacidad volumétrica (m³)</th>
<th>Total relleno sanitario</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Total relleno sanitario

Capacidad total del terreno

Volumen relleno sanitario = Capacidad total del terreno x 0.8

Material de cobertura = 20-25% del volumen de residuos compactados

Cantidad de RSM = Volumen RSM (m³) x densidad estabilizada (t/m³)

Vida útil total

<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Total relleno sanitario</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
5.11.3 Dimensiones de la celda diaria

? Área de la celda

\[A_c = \frac{V_c}{h_c} \] \[5-33\]

donde:

\(A_c \) = Área de la celda (m\(^2\)/día)

\(h_c \) = Altura de la celda (m) - límite 1,0 m a 1,5 m. Flintoff reporta alturas entre 1,5 y 2,0 m para rellenos sanitarios con operación manual, con lo que disminuye el material de cobertura.

? Largo o avance de la celda (m)

\[l = \frac{A_c}{a} \] \[5-34\]

\(a \) = Ancho que se fija de acuerdo con el frente de trabajo necesario para la descarga de la basura por los vehículos recolectores (m). Debe tenerse en cuenta que en pequeñas comunidades serán uno o dos vehículos como máximo los que descarguen a la vez, lo que determina el ancho entre 3 y 6 m.

Como los taludes (perímetro) también deben ser cubiertos tierra, la relación del ancho con el largo de la celda que menos material de cobertura requerirá sería la de un cuadrado. Se trata, entonces, de la raíz cuadrada del área de la celda:

\[a = l = \sqrt{A_c} \] \[5-35\]

Cuando esto no se cumple por ser el ancho resultante demasiado estrecho para la descarga de los vehículos, entonces se fija primero el ancho y luego se calcula el avance, tal como se explicó con la fórmula [5-33].

5.12 Cálculo de la mano de obra

La mano de obra necesaria para conformar la celda diaria depende de:

? La cantidad de RSM que se debe disponer.

? La disponibilidad y el tipo de material de cobertura.
Los días laborables en el relleno.
La duración de la jornada diaria.
Las condiciones del clima.
La descarga de los residuos en el frente de trabajo según la distancia.
El rendimiento de los trabajadores.

La siguiente es una guía para calcular el número de trabajadores necesarios en el relleno sanitario manual. En ella se considera una jornada de ocho horas diarias, con un tiempo efectivo de seis horas. Estos rendimientos son bajo condiciones normales de trabajo y pueden variar en cada lugar según los factores descritos anteriormente (cuadro 5.7).

Cuadro 5.7
Guía de cálculo para estimar el número de trabajadores

<table>
<thead>
<tr>
<th>OPERACIÓN</th>
<th>RENDIMIENTOS</th>
<th>hombre/día</th>
</tr>
</thead>
<tbody>
<tr>
<td>Movimiento de desechos</td>
<td>$\frac{\text{Desechos sólidos (t/día)}}{\text{(0,95 t/hora – hombre)}} \times \frac{1}{6 \text{ horas}}$</td>
<td></td>
</tr>
<tr>
<td>Compactación de desechos</td>
<td>$\frac{\text{Área superficial (m}^2\text{)}}{\text{(20 m}^2\text{/hora – hombre)}} \times \frac{1}{6 \text{ horas}}$</td>
<td></td>
</tr>
<tr>
<td>Movimiento de tierra</td>
<td>$\frac{\text{Tierra m}^3}{(0,35 \text{ a } 0,70 \text{ m}^3/\text{hora – hom.})} \times \frac{1}{6 \text{ horas}}$</td>
<td></td>
</tr>
<tr>
<td>Compactación de la celda</td>
<td>$\frac{\text{Área superficial (m}^2\text{)}}{\text{(20 m}^2\text{/hora – hombre)}} \times \frac{1}{6 \text{ horas}}$</td>
<td></td>
</tr>
<tr>
<td>(Total hombres)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

a Adaptar a cada región. Apéndice D, ejemplo 11. Modelo de cálculo de obtención de rendimientos.

Flintoff reporta los siguientes requerimientos de mano de obra de tres sitios, en los cuales se operaron rellenos sanitarios manualmente (cuadro 5.8).
Guía para el diseño, construcción y operación de rellenos sanitarios manuales

Cuadro 5.8
Rendimientos reportados de otras experiencias

<table>
<thead>
<tr>
<th>Sitio</th>
<th>t/día</th>
<th>Rendimiento</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>30</td>
<td>2 hombres /15 t/hombre-día</td>
</tr>
<tr>
<td>2</td>
<td>50</td>
<td>6 hombres /8 t/hombre-día</td>
</tr>
<tr>
<td>3</td>
<td>100</td>
<td>10 hombres /10 t/hombre-día</td>
</tr>
</tbody>
</table>

Las densidades de los desechos distribuidos en estos lugares fluctuaron entre 250 y 400 kilogramos por metros cúbicos; así, para un tonelaje dado, el volumen que se debe manejar podría ser similar o mayor que en los países en desarrollo.

El cuadro 5.9 indica la escala probable de los requerimientos de mano de obra y material de cobertura con una tasa de generación y densidad típicas en América Latina.

Cuadro 5.9
Requerimientos probables de mano de obra

<table>
<thead>
<tr>
<th>Población Hab</th>
<th>Población Hab</th>
<th>Volumen (m³/día)</th>
<th>Volumen (m³/día)</th>
<th>Volumen (m³/día)</th>
<th>Volumen (m³/día)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>t/día</td>
<td>Bas. suelta</td>
<td>Bas. comp.</td>
<td>Material de</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(ppc=0,5 kg/hab/día)</td>
<td>(330 kg/m³)</td>
<td>(500 kg/m³)</td>
<td>cobertura m³</td>
</tr>
<tr>
<td>20.000</td>
<td>10</td>
<td>30</td>
<td>20</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>50.000</td>
<td>25</td>
<td>75</td>
<td>50</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>100.000</td>
<td>50</td>
<td>150</td>
<td>100</td>
<td>20</td>
<td>19</td>
</tr>
</tbody>
</table>

¡El supervisor es muy importante!
Además del número de hombres que ejecutarán las labores propias de la construcción del relleno, es necesaria otra persona que dirija y oriente las operaciones en el relleno sanitario manual en calidad de supervisor. Teniendo en cuenta que contar con un profesional capacitado en el manejo de RSM sería costoso en algunos municipios, se recomienda contratar un individuo que sea

- técnico, con secundaria completa y que sepa realizar operaciones matemáticas,
 o
- promotor de salud, que sepa realizar operaciones matemáticas y que tenga cierta experiencia en el ramo.

Cabe anotar que la presencia del supervisor en el relleno sanitario es importante durante casi toda la jornada laboral en los primeros meses. Conforme adquiera mayor experiencia, es posible reducir a dos horas diarias su tiempo de permanencia en el lugar: una hora en la mañana y otra en la tarde. El resto del día lo podría dedicar a la supervisión del aseo urbano en general.

En última instancia, esta labor de supervisión puede ser llevada a cabo por el jefe de Obras Públicas del municipio.

5.13 Proyecto paisajístico

El relleno sanitario manual también debe tener consideraciones estéticas y paisajísticas, para que, una vez concluida su vida útil, pueda integrarse al ambiente natural y se armonice con el entorno.

La cobertura final compactada de 0,4 a 0,6 metros, como mínimo, y los drenajes de aguas de escorrentía y gases son esenciales para la vida vegetal sobre el relleno, la que se restringe a especies de raíces cortas mientras el relleno se estabiliza.

Se recomienda sembrar en toda el área arbustos de raíces cortas que no traspasen la cobertura. Se admite también el plantío en hoyos rellenados con tierra abonada más pasto o grama, a fin de evitar la erosión y el aumento del lixiviado. A medida que se terminen algunas áreas del relleno, conviene sembrar el pasto sin esperar a que se acabe toda la superficie de las plataformas o terraplenes.

5.14 Análisis de impactos socioambientales

Los análisis de impactos ambientales buscan identificar anticipadamente los efectos positivos y negativos que tiene todo proyecto de relleno sanitario en sus distintas fases: selección del sitio, construcción, operación y clausura.
La medición de los impactos debe ser interdisciplinaria y realizarse en los componentes naturales tanto del sitio como del entorno (agua, suelo y aire), al igual que en las variables de tipo económico y social.

En el cuadro 5.10 se presentan los principales aspectos socioambientales asociados con las etapas del proyecto de un relleno sanitario.
Cuadro 5.10

<table>
<thead>
<tr>
<th>Aspectos socioambientales asociados a un proyecto de relleno sanitario manual</th>
<th>Fuente / Actividad</th>
<th>Suelo</th>
<th>Agua</th>
<th>Aire</th>
<th>Salud</th>
<th>Social</th>
<th>Vecinos del terreno y los vecinos</th>
<th>Material de desecho</th>
</tr>
</thead>
<tbody>
<tr>
<td>Etapa del proceso</td>
<td>Desvalorización del terreno y predios vecinos</td>
<td>Contaminación visual</td>
<td>Superficial</td>
<td>Subterránea</td>
<td>Ruido</td>
<td>Olores</td>
<td>Humo</td>
<td>Polvo</td>
</tr>
<tr>
<td>Selección del sitio</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Usos del suelo</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Opinión pública</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Visión de desecho e tráfico vehicular</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dirección del terreno</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Costos del terreno</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Selección del terreno</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Opinión pública</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vía de acceso y tráfico vehicular</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dirección del viento</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Costos del terreno</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Relleno sanitario manual</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Generación de empleo</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Turismo</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Preparación del terreno</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Camino de acceso</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Desvío de agua</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Canal permanente</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Recolección de residuos</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Evacuación de agua</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Curea (porciones e instalaciones sanitarias)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Operación y mant.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Material</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Uso futuro</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Diseño de un relleno sanitario manual
Guía para el diseño, construcción y operación de rellenos sanitarios manuales
6. PREPARACIÓN DEL TERRENO Y CONSTRUCCIÓN DE LA INFRAESTRUCTURA
6.1 Preparación del terreno

La preparación del terreno tiene como objetivo permitir la construcción de la infraestructura básica del relleno para recibir y disponer los RSM en una forma ordenada y con el menor impacto posible, así como facilitar las obras complementarias y las relativas al paisaje.

Los siguientes trabajos son de vital importancia para la preparación del terreno; se trata de obras sencillas y de bajo costo que pueden ser ejecutadas con rapidez por los trabajadores del municipio, cumpliendo con los requisitos sanitarios.

6.1.1 Limpieza y desmonte

En el terreno se debe preparar un área que sirva de base o suelo de soporte a los terraplenes que conformarán el relleno; algunas veces será necesaria la tala de árboles y arbustos para que no sean un obstáculo durante la operación. Esta limpieza se hará por etapas y de acuerdo con el avance de la obra. De este modo, se evitará la erosión del terreno (figura 6.1).

6.1.2 Tratamiento del suelo de soporte

7 Nivelación

El trabajo continúa con la remoción de las primeras capas de suelo, dependiendo de la cantidad de material de cobertura disponible. A veces es ventajoso dejar el
terreno intacto, con el fin de usar su capacidad de absorción y filtración para remover contaminantes del lixiviado.

Se recomienda que la superficie de la base de las plataformas de residuos tenga una pendiente negativa de 2 ó 3% con respecto a los taludes del fondo y laterales, con el objetivo de garantizar el escurrimiento rápido de los líquidos percolados y su almacenamiento en las zanjas de drenaje.

Para la nivelación del suelo de soporte y los cortes de los taludes, se recomienda que el movimiento de tierra se haga por etapas, dependiendo de la vida útil del sitio; así la lluvia no erosionará el terreno ni se perderá la tierra, que podría emplearse como cobertura. Hay que conservar y almacenar la cubierta vegetal de las áreas iniciales, ya que servirá para la siembra de pasto a medida que se vayan terminando algunas áreas del relleno.

En la nivelación del suelo de soporte o base de los terraplenes y en la apertura de las trincheras o zanjas se debe emplear equipo pesado (tractor de orugas y/o retroexcavadora), puesto que la excavación manual es demasiado ineficiente. El mismo equipo servirá para la construcción del camino de acceso y la(s) vía(s) interna(s) o la extracción y el almacenamiento de material de cobertura; es preferible que esta última actividad se realice solo en periodos secos (figura 6.3).

A través de la Secretaría de Obras Públicas, la autoridad municipal podrá solicitar la maquinaria en calidad de préstamo o arriendo al gobierno estatal o incluso a otro municipio cercano. Una modalidad de préstamo puede ser el compromiso de esta autoridad de sufragar tanto los gastos de combustible del equipo como el salario y la alimentación del operador por los días que sean necesarios.

Figura 6.2

Pendiente de la superficie del terreno o base del relleno

Para la nivelación del suelo de soporte y los cortes de los taludes, se recomienda que el movimiento de tierra se haga por etapas, dependiendo de la vida útil del sitio; así la lluvia no erosionará el terreno ni se perderá la tierra, que podría emplearse como cobertura. Hay que conservar y almacenar la cubierta vegetal de las áreas iniciales, ya que servirá para la siembra de pasto a medida que se vayan terminando algunas áreas del relleno.

En la nivelación del suelo de soporte o base de los terraplenes y en la apertura de las trincheras o zanjas se debe emplear equipo pesado (tractor de orugas y/o retroexcavadora), puesto que la excavación manual es demasiado ineficiente. El mismo equipo servirá para la construcción del camino de acceso y la(s) vía(s) interna(s) o la extracción y el almacenamiento de material de cobertura; es preferible que esta última actividad se realice solo en periodos secos (figura 6.3).

A través de la Secretaría de Obras Públicas, la autoridad municipal podrá solicitar la maquinaria en calidad de préstamo o arriendo al gobierno estatal o incluso a otro municipio cercano. Una modalidad de préstamo puede ser el compromiso de esta autoridad de sufragar tanto los gastos de combustible del equipo como el salario y la alimentación del operador por los días que sean necesarios.
Por lo general, el movimiento de tierras no durará más de una semana, puesto que la preparación del terreno para un relleno sanitario manual se concibe por etapas.

Una de las mayores dificultades que se presentan en las pequeñas poblaciones, aparte de la adquisición del terreno para la construcción del relleno sanitario, es el préstamo o arriendo del equipo pesado para el movimiento de tierras inicial que permita abrir el camino de acceso para el vehículo recolector y preparar el suelo de soporte. En esta labor se pone a prueba la capacidad de gestión del servidor público encargado de la administración.

Drenaje

Se debe evitar construir el relleno sanitario “sobre” alguna pequeña corriente o nacimiento de agua.

Cuando solo se cuenta con terrenos cenagosos o pantanosos, estos pueden aprovecharse para construir un relleno sanitario manual bajando el nivel freático de manera permanente, lo que se logra con el siguiente procedimiento (figura 6.4):

- Excavar una o varias zanjas de drenaje en la parte inferior del terreno, con la profundidad que se requiera en cada caso, hasta confirmar que las primeras capas de basura en la base del terreno estén a un mínimo de un metro sobre el nivel más alto del agua y que el suelo sea arcilloso.
- Colocar una tubería perforada de concreto y llenar la zanja con piedra y grava, a manera de filtro.
- Cubrir con tela de ingeniería (geotextil) o un material similar el drenaje de piedra para evitar su colmatación. Es adecuado el polipropileno, que se puede obtener de los costales o sacos usados.
Colocar una capa de 0,3 a 0,6 metros de material arcilloso compactado sobre la tela para garantizar el aislamiento entre la superficie superior del drenaje y los RSM y evitar así una posible contaminación del agua.

Tener cuidado de no cruzar los drenajes del líquido percolado con la zanja de drenaje para abatir el nivel del agua.

Figura 6.4

Drenaje para terrenos con alto nivel freático

6.1.3 Cortes y conformación de taludes del terreno

Debido a las grandes variaciones en el tipo y disposición de los materiales, es indispensable analizar la estabilidad del terreno para definir el talud más apropiado. Se puede establecer como norma que para un corte de más de siete metros de altura, se deberá realizar el estudio de estabilidad con base en principios de la geotecnia. Para alturas menores, casi siempre se podrá definir el talud con base en la clasificación de las rocas y suelos y en el estado de disposición de los materiales de corte.

Para un corte de baja altura (menor de cinco metros), se puede recomendar un único talud; para alturas mayores, sería mejor tener dos taludes diferentes, mientras que en otros casos será necesaria la construcción de bermas o banquetas intermedias (véase el capítulo 5, figura 5.4, numeral 5.4.3).

Los taludes del terreno se dejan de tal manera que no causen erosión y puedan darle buena estabilidad al relleno. Estos pueden ser desde verticales hasta del tipo 3:1 (horizontal:vertical), dependiendo del tipo de suelo.

La superficie de las terrazas o terraplenes deberán tener una pendiente del 2% con respecto a los taludes interiores, a fin de conducir las aguas de lixiviado a las zanjas de drenaje y evitar encharcamientos cuando se usen como vías temporales de acceso; lo anterior contribuye también a brindar estabilidad a la obra.
Las zanjas podrán tener forma trapezoidal, cuadrada o rectangular, dependiendo de las condiciones del suelo. La separación entre ellas será de 0,5 a un metro, según se requiera para garantizar su estabilidad mientras permanecen vacías (figura 6.5).

6.1.4 Requerimientos de infraestructura y equipamiento de un relleno sanitario

El cuadro 6.1 permite identificar rápidamente las principales obras de infraestructura y equipamiento básico de un relleno sanitario.
Cuadro 6.1
Infraestructura y equipamiento básico de un relleno sanitario

<table>
<thead>
<tr>
<th>Aspecto</th>
<th>Infraestructura/equipamiento</th>
<th>Utilidad</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>? Drenes de recolección y evacuación de lixiviados.</td>
<td>Limita la infiltración de los lixiviados hacia las aguas subterráneas y reduce el riesgo de afloramiento de los lixiviados.</td>
</tr>
<tr>
<td></td>
<td>? Planta de tratamiento de lixivios o estación de bombeob.</td>
<td>Reduce el poder contaminante del lixiviado para disponerlo en algún cuerpo receptor.</td>
</tr>
<tr>
<td></td>
<td>? Pozo de monitoreo.</td>
<td>Facilita el monitoreo de la calidad del agua subterránea para detectar posibles fallas en el sistema.</td>
</tr>
<tr>
<td></td>
<td>? Enterramiento y compactación con la maquinaria adecuada (compactador, tractor, etc.) o en el caso de la operación manual, rodillo y pisones.</td>
<td>Es la esencia del método de relleno sanitario; permite confinar los residuos sólidos.</td>
</tr>
<tr>
<td>3. Reducción del impacto paisajístico</td>
<td>? Cerco perimetral, de preferencia con vegetación nativa.</td>
<td>Aísla y delimita el sitio; reduce la diseminación de olores; atrapa RSM que se pueden desplazar por la acción del viento.</td>
</tr>
<tr>
<td>4. Seguridad e higiene laboral</td>
<td>? Caseta de control.</td>
<td>Ayuda a controlar la cantidad y el tipo de residuos que ingresan al sitio.</td>
</tr>
<tr>
<td></td>
<td>? Almacén, vestuario y servicios higiénicos.</td>
<td>Facilita la higiene de los trabajadores y el almacenamiento de ropa de trabajo, equipos y herramientas.</td>
</tr>
<tr>
<td></td>
<td>? Equipo de seguridad e higiene ocupacional (guantes, mascarilla, etc.).</td>
<td>Protege al personal de enfermedades y minimiza los impactos de accidentes ocupacionales.</td>
</tr>
</tbody>
</table>

*a Lixiviado: líquido que se infiltra por los residuos sólidos capturando contaminación, que luego puede aflorar en la superficie o infiltrarse hacia capas más profundas y contaminar las aguas subterráneas.

*b También se puede rebombar (recircular) el lixiviado al mismo relleno sanitario para que este funcione como un filtro.

6.2 Infraestructura periférica

6.2.1 Vía de acceso

El relleno sanitario manual debe estar cerca de una vía pública principal y de uso permanente. Es necesario reiterar que el tiempo empleado en el acarreo de basura, desde el área poblada hasta el sitio del relleno sanitario y viceversa, es más importante que la distancia (figura 6.6).

El camino de acceso interno también debe reunir las condiciones mínimas que garanticen el ingreso fácil y seguro al vehículo o vehículos de recolección de residuos en todas las épocas del año.

Para los casos en que el tráfico vehicular es mínimo, la vía de acceso puede ser una pequeña carretera afirmada de 6 metros de ancho, con un buen mantenimiento durante todo el año. En ocasiones conviene regar el camino con aceite quemado para evitar la acumulación de polvo.

Figura 6.6
Camino de acceso al relleno sanitario manual
La pendiente máxima de esta vía puede ser de 7% si el vehículo o los vehículos tienen que remontar la pendiente cargados, y de 10% si la vía está por encima del relleno, lo que sugiere que descenderán cargados al frente de trabajo.

6.2.2 Drenaje perimetral de aguas de lluvias

Apenas se pueda, las fuentes o pequeñas venas de agua existentes en el área del relleno deben ser desviadas y canalizadas antes del inicio de la operación. Además de interferir negativamente en la operación, su paso por la masa de residuos contribuirá al aumento del volumen del líquido percolado.

La interceptación y el desvío del escorrimento superficial de las aguas pluviales fuera del relleno contribuyen significativamente a la reducción del volumen de lixiviado y al mejoramiento de las condiciones de operación. El canal siempre deberá ser construido en la curva de nivel que garantice una velocidad máxima que no provoque una excesiva erosión (figura 6.7).

![Figura 6.7](Canal perimetral para el desvío de las aguas de escorrentía superficial)

6.3 Infraestructura del relleno

6.3.1 Drenaje y manejo del lixiviado

El manejo del líquido percolado o lixiviado es uno de los mayores problemas que se presentan en un relleno sanitario. A pesar de que éste cuenta con canales periféricos que interceptan y desvían las aguas de escorrimento, la lluvia que cae directamente sobre su superficie aumenta el volumen del lixiviado (capítulo 5, numeral 5.9). A continuación se señalan algunos métodos para disminuir estos problemas.
Es de vital importancia construir un sistema de drenaje que servirá de base al relleno sanitario antes de depositar la basura; este sistema deberá retener el lixiviado en el interior del relleno para su almacenamiento indefinido. Con ello se logra disminuir en buena parte su salida y evitar su tratamiento, lo que por su elevado costo es sumamente complejo y poco factible en los pequeños municipios.

Para una mayor eficiencia, se recomienda construir estos drenajes en todas las bases de los taludes interiores y exteriores de las terrazas o niveles que conforman el

Figura 6.8
Distribución del sistema de drenaje del lixiviado
relleno sanitario. Así, se evitan los escurrimientos por la superficie de los taludes inferiores de los terraplenes de residuos y, además, su interconexión con el drenaje vertical de gases.

Construcción del sistema de drenaje interno de lixiviado

El sistema de drenaje y almacenamiento de lixiviado consiste en una red horizontal de zanjas de piedra, interrumpidas con pantallas del mismo terreno o de tapia y madera. Una manera de construir los drenes es la siguiente:

1. Se traza en el terreno la línea por donde se ubicará el drenaje, el cual puede ser similar al de un sistema de alcantarillado (p. ej.: espina de pescado) (figura 6.8).

2. Se excavan las zanjas del dren principal de 0,6 metros por un metro y se instalan las pantallas cada 5 ó 10 metros, con un ancho de 0,20 a 0,30 metros, o simplemente se dejan intactos en la zanja estos pequeños bloques de suelo. Para que el lixiviado pueda permanecer almacenado en el interior del relleno sin rebosar por las zanjas, se dejará un borde libre de unos 0,30 metros entre la pantalla y el nivel de la superficie del terreno (figura 6.9).

3. A fin de tener más capacidad de almacenamiento, se llenan las zanjas con piedras que midan entre 4 y 6 pulgadas, no con cascajo. Hecho esto, se recomienda colocar sobre ellas un material que permita infiltrar los líquidos y retener las partículas finas que lo puedan colmar; para ello se pueden utilizar, como ya se dijo, sacos o costales de polipropileno o bien ramas secas de helecho, pasto e incluso hierba.

Figura 6.9

Detalles de las zanjas para el almacenamiento del lixiviado
Las zanjas que contengan llantas desechadas de automotores poseen mayor capacidad de almacenamiento del líquido percolado; de paso, se aprovecha así un material voluminoso de difícil manejo en el relleno, que, de no disponerse adecuadamente, podría terminar convirtiéndose en un criadero de mosquitos. Una vez enterradas las llantas en sentido vertical, una junto a la otra, se coloca encima una capa de piedra de 0,20 a 0,30 metros de espesor y se la cubre con sacos de polipropileno o ramas secas, como en el caso anterior. La zanja tendrá una conformación especial para recibir las llantas (figura 6.10).

Cuando se presentan largos periodos de lluvias y la cantidad de lixiviado excede la capacidad de las zanjas de almacenamiento al interior del relleno, se recomienda prolongar y orientar las zanjas de drenaje de la misma manera y, además, construir fuera del terreno una red de zanjas de secado que permita almacenar este líquido durante esas épocas (figura 6.11) (véase el capítulo 5, numeral 5.9.2).

Figura 6.10
Zanja de lixiviado para recibir las llantas usadas
En estas zanjas de drenaje exterior se pueden dejar tramos alternos entre pantalla y pantalla sin efectuar el llenado de piedras. Esto se hace con varios propósitos, entre ellos:

- Estimar el volumen del lixiviado que sale del relleno.
- Determinar la cantidad de sedimentos y el momento de efectuar la limpieza de las zanjas.

Minimización de lixiviado en regiones lluviosas

En las regiones con condiciones extremas de precipitación pluvial (más de 3.000 milímetros por año), la lluvia que cae directamente sobre el área rellenada puede generar gran cantidad de lixiviado y superar la capacidad de almacenamiento de los diversos rellenos.

El método más eficaz para controlar la lluvia es cubrir con un techo ligero de palma, paja o plástico (similar al de los invernaderos) toda el área superficial de las zanjas o de los terraplenes de basura; con ello se impedirá el ingreso de la lluvia que cae directamente sobre las zonas terminadas y el frente de trabajo. Este método puede disminuir en 90 ó 95% la generación de lixiviado. En algunos pequeños rellenos este problema podría ser eliminado por completo (figura 6.12).
Figura 6.12
Cubierta o techo ligero para evitar el ingreso del agua de lluvia al relleno

Control y almacenamiento del lixiviado

- Sobredimensionar la red de zanjas de drenaje en el relleno sanitario.

- Construir el relleno de manera que se tengan áreas estrechas de trabajo; es decir, es preferible superponer las celdas, una encima de otra, apoyándolas sobre el talud del terreno y las celdas ya terminadas; dicho de otro modo, la obra se hace hacia arriba en lugar de extenderla en el terreno.

- Introducir en la rutina diaria el cubrimiento de celdas y áreas terminadas temporalmente con material plástico, a fin de impedir la infiltración del agua de lluvia a través de la basura y reducir así el volumen de lixiviado. Hay que señalar que la cantidad de material plástico requerida es pequeña, tomando en cuenta la poca extensión del relleno y el método de trabajo. También se puede utilizar el plástico que se ha desechado de los invernaderos de los grandes cultivos.

- Inmediatamente después de haber terminado algunas zonas del relleno, se procede a aplicar la cobertura final en cuya superficie se sembrará pasto o grama.

Generalmente, en las regiones donde la precipitación anual no excede los 300 milímetros y se cuenta con un canal para interceptar y desviar el agua de lluvia, el lixiviado no constituye un problema significativo; sin embargo, se recomienda construir
zanjas de menor tamaño para el almacenamiento interno de la poca cantidad producida por la humedad de la materia orgánica.

6.3.2 Tratamiento del lixiviado

Si cubrimos las áreas rellenadas de residuos y el frente de trabajo con un techo ligero de palma, paja o plástico, no tendremos lixiviado, con lo que se minimizarán todos los problemas y los costos de un tratamiento por lo demás incierto en estos lugares.

En las pequeñas poblaciones es necesario evitar a toda costa la generación de lixiviado, pero si a pesar de todo se genera un poco, hay que mantenerlo dentro del relleno sanitario ya que su tratamiento es impracticable.

Es importante tener un suelo impermeable o bien hay que impermeabilizarlo artificialmente para que se pueda construir la red de zanjas de almacenamiento que retendrá el lixiviado en el relleno (cf. capítulo 4, numeral 4.4.4, sobre las condiciones hidrogeológicas).

Otra práctica que minimiza el problema del lixiviado al clausurarse algunas áreas del relleno sanitario o cuando este acaba su vida útil es la siembra de pasto, grama y pequeños arbustos de raíces cortas que se adapten a las condiciones de la obra. Se los debe sembrar tanto sobre la superficie ya clausurada como en los alrededores del sector rellenado; la evapotranspiración puede ser muy efectiva y en algunos casos hasta evita la producción de lixiviado.

En casos extremos en que no se logre controlar su producción y dado que el lixiviado de los RSM de las pequeñas poblaciones presenta características semejantes a las aguas residuales domésticas (con gran porcentaje de materia orgánica biodegradable de difícil decantación), se podrán aplicar tratamientos biológicos para mejorar en lo posible la calidad de este líquido. Ejemplos de estos métodos son los filtros percoladores y las lagunas de estabilización.

6.3.3 Drenaje de gases

El drenaje de gases está constituido por un sistema de ventilación de piedra o tubería perforada de concreto (revestida con piedra) que funciona a manera de chimeneas o tubos de ventilación que atraviesan en sentido vertical todo el relleno. Estas se construyen conectándolas a los drenajes de lixiviado que se encuentran en el fondo y se las proyecta hasta la superficie, a fin de lograr una mejor eficiencia en el drenaje de líquidos y gases (figura 6.13).
Preparación del terreno y construcción de la infraestructura

Estas chimeneas se construyen verticalmente a medida que avanza el relleno, procurando que su entorno esté bien compactado. Se recomienda que cada una tenga un diámetro de 0,30 a 0,50 metros y que sean instaladas cada 20 ó 50 metros, según el criterio del técnico (figura 6.14).

Figura 6.13
Interconexión de los sistemas de drenaje de gases y lixiviado

Estas chimeneas se construyen verticalmente a medida que avanza el relleno, procurando que su entorno esté bien compactado. Se recomienda que cada una tenga un diámetro de 0,30 a 0,50 metros y que sean instaladas cada 20 ó 50 metros, según el criterio del técnico (figura 6.14).

Figura 6.14
Construcción del drenaje de gases o chimeneas

a) Con varas de madera, alambre de púas o malla de gallinero y piedras
b) Uso de un tubo plástico o metálico y piedras. El tubo se va extrayendo a medida que se eleva el relleno.
Prevista la conclusión de la última celda, se colocan dos tubos de concreto, el primero perforado para facilitar la captación y el drenaje de gases; el segundo tubo, en cambio, no será perforado con el objeto de que el gas metano pueda ser quemado a la salida, y se eliminarán de paso los olores producidos por otros gases. A fin de facilitar la quema del metano, se recomienda la instalación de una caperuza metálica y la preparación de un mechón para encender el gas a la salida del tubo (figura 6.16).
Preparación del terreno y construcción de la infraestructura

Figura 6.17
Detalles de construcción del drenaje de gases

Figura 6.18
Propuestas para la estructura de salida final del drenaje de gases del relleno
Cuando se utiliza tubería, se debe revestir con piedra o cascajo, a manera de camisón, a fin de que los RSM o la tierra de cobertura no obstruyan los orificios de los tubos (figuras 6.17 y 6.18).

6.3.4 Pozos de monitoreo

Como resultado de los mecanismos de descomposición de los RSM que ocurren en el relleno ya mencionados, se generan líquidos, gases y productos intermedios. Algunos son retenidos en los poros del terreno, mientras que otros pueden ser arrastrados y/o solubilizados por los líquidos que atraviesan las capas de tierra y basura hasta alcanzar las fuentes de agua.

Por lo tanto, aunque no es necesario en todos estos pequeños proyectos, se recomienda instalar una serie de pozos de monitoreo con la finalidad de detectar la probable contaminación del agua subterránea que resulta de la construcción del relleno sanitario.

Estos pozos podrán ser cavados manualmente y, dependiendo del tipo de suelo, se tomarán medidas para evitar derrumbes durante la excavación. Una vez hallado el nivel freático, se coloca en el fondo el material granular y se instala una tubería de 8" de diámetro que permita el ingreso de una botella plástica o garrafón para tomar muestras del agua. Después de instalar la tubería, se llena el resto del pozo con la misma tierra excavada (figura 6.19).

![Figura 6.19](image_url)

Figura 6.19

Proceso constructivo de un pozo de monitoreo de aguas
En los sitios en donde el nivel freático se encuentra a más de 4 metros, es conveniente detectar si hay agua debajo del relleno o identificar el pozo más cercano que esté en funcionamiento. Solo entonces se procederá a tomar muestras de esas fuentes para evaluar cualquier posible impacto.

6.3.5 Caminos y drenaje pluvial internos

En la planificación se deberán estudiar los caminos de circulación interna dentro del relleno, ya que por el permanente desplazamiento se pueden producir trastornos durante la época de lluvias.

Si bien en un relleno sanitario manual la vía de acceso al frente de operación y control puede estar hecha de piedra y restos de demoliciones, siempre deberá mantenerse seca y en buen estado si se quiere evitar que los vehículos se atasquen o vuelquen.

6.4 Construcciones auxiliares

Las construcciones auxiliares que se proponen son pequeñas y de bajo costo. Se condicen con la vida útil prevista para el relleno sanitario, siempre dentro de un marco de máxima economía que recurre al empleo intensivo de mano de obra en todas las actividades del relleno.

Figura 6.20
Encerramiento perimetral
6.4.1 Cerco perimetral

Se debe encerrar el terreno con un cerco de potrero de 1,5 metros de altura, hecho con alambre de púas (galvanizado, calibre 12, de 10 púas por metro lineal) de cinco hiladas y que tenga un portón de entrada para impedir el libre paso del ganado al interior del relleno. De hecho, esto entorpece la operación y destruye las celdas de residuos, especialmente cuando se retiran los trabajadores. El portón, además, restringe el ingreso de personas, dándole un poco más de disciplina y seguridad a la obra (figura 6.20).

6.4.2 Área de amortiguamiento y protección

En muchos casos también resulta necesario dejar libre una franja de terreno de 5 a 20 metros entre el lindero y la zona de terraplenes o zanjas con residuos, a fin de contar con una zona de amortiguamiento que mitigue los posibles efectos negativos de las operaciones con basura en los predios vecinos. En esta área de retiro es importante colocar un cerco vivo de áboles y arbustos que impida que los vecinos y transeúntes vean los RSM y la operación del relleno. En ocasiones, se pueden usar los excedentes de tierra de las trincheras excavadas para levantar una especie de biombo o pantalla con el mismo fin.

Esta zona mejora la apariencia estética del relleno y sirve para retener papeles y plásticos arrastrados por el viento. Por razones obvias, se sugiere la siembra de árboles de rápido crecimiento (pino, eucalipto, laurel, bambú, etc.) (figura 6.21).
6.4.3 *Caseta de control*

La construcción de una caseta con un área aproximada de 12 a 15 metros cuadrados es importante para ser usada como control de ingreso o lugar para guardar pequeñas herramientas de trabajo (rodillo, carretas, palas, picas, etc.), como un espacio donde los obreros se puedan asear, cambiar y guardar su ropa, como cocina donde calentar alimentos o como refugio en caso de lluvias. Esta caseta debe tener una mesa o escritorio y una o varias sillas, a fin de que el supervisor lleve más cómodamente el registro de las actividades.

Se puede usar una caseta prefabricada e incluso adaptar un contenedor. La administración municipal podría solicitarlos en calidad de donación o préstamo (figura 6.22).

En casos especiales es conveniente construir más bien una pequeña vivienda rural donde habite permanentemente uno de los trabajadores con su propia familia y donde se puedan guardar herramientas e incluso tierra excavada para que sea utilizada en algún cultivo futuro.
Nota: Esta letrina se utilizará cuando el nivel freático se localice a poca profundidad

Figura 6.23
Instalaciones sanitarias
6.4.4 Instalaciones sanitarias

El relleno debe contar con instalaciones que aseguren la comodidad y el bienestar de los trabajadores. En consecuencia, se debe llevar agua al relleno para los servicios sanitarios. En tiempos de estiaje se puede utilizar parte de esta agua para regar la superficie del relleno a fin de obtener una mejor compactación y evitar la acumulación de polvo. Igualmente, se debe construir un tanque séptico o una letrina (figura 6.23).

Para la construcción de las instalaciones sanitarias, se puede pedir asesoría a las autoridades de salud.

6.4.5 Patio de maniobras

Se deberá contar con una zona de alrededor de 200 metros cuadrados (10 x 20) para que el(los) vehículo(s) recolector(es) pueda(n) maniobrar y descargar la basura en el frente de trabajo, y puedan maniobrar fácilmente.

6.4.6 Cartel de presentación

Es necesario colocar un cartel de presentación del relleno sanitario en construcción para que la comunidad identifique la obra.

Figura 6.24
Cartel de presentación del relleno sanitario
El cartel puede estar compuesto de dos hojas de cinc y un marco de madera, cubiertos primero con anticorrosivo y luego con pintura del color deseado. Ahí se escribirán los nombres del municipio y del relleno sanitario, se brindará una breve descripción del proyecto y una leyenda que promueva la protección del medio ambiente (figura 6.24).

Desde un principio, se debe elegir un nombre para el relleno sanitario. Este nombre siempre tendrá que figurar en todos los documentos y la correspondencia de la obra.
7. CONSTRUCCIÓN, OPERACIÓN Y MANTENIMIENTO
Guía para el diseño, construcción y operación de rellenos sanitarios manuales
7.1 Construcción

Una vez realizado el diseño del relleno sanitario, sigue la ejecución del proyecto. De hecho, un buen diseño no es suficiente si no existe la voluntad político-administrativa para destinar los recursos necesarios a fin de que sea ejecutado debidamente. La buena construcción de un relleno sanitario es de vital importancia en comparación con la de otras obras públicas, debido a la duración de su ejecución y al permanente mantenimiento que requiere.

Para planificar la construcción y el avance del relleno sanitario es conveniente contar con una serie de planos, a saber: el del diseño del proyecto, el de la planta general de localización de las obras, el de las modificaciones del terreno (configuración inicial del sitio) y el de los detalles de las obras de infraestructura. También se requieren los de la planta y los perfiles de las zanjas o terraplenes, que indican la forma de excavación de las primeras y la configuración del relleno de las segundas; estos permitirán orientar las configuraciones parcial y final de la obra. Todos estos planos indican la forma de programar el frente de trabajo y su avance, calculando los volúmenes ocupados y las alturas de acuerdo con el diseño.

7.1.1 Método constructivo

El método constructivo de un relleno sanitario manual depende principalmente de la topografía del sitio, aunque también está condicionado por el tipo de suelo y la profundidad del nivel freático.

El método de área se emplea en terrenos planos, canteras abandonadas, depresiones y partes bajas de las cañadas. Las características propias del lugar determinarán si es posible extraer la tierra de cobertura del sitio o si se la debe transportar de lugares cercanos. El método consiste en depositar los residuos sobre la superficie y recostarlos contra el talud del terreno inclinado; luego se los compacta en capas inclinadas para formar la celda que después será cubierta con tierra. Al inicio, las celdas se construyen en un extremo del área que debe ser llenada y se avanza hasta terminar en el otro extremo (figura 7.1).

Se suele usar el método de trinchera cuando el nivel de las aguas freáticas es profundo y las pendientes del terreno son suaves; de ahí que las zanjas puedan ser excavadas con equipos de movimiento de tierra. Este método consiste en depositar los residuos en un extremo de la zanja recostándolos contra el talud; ahí los trabajadores los esparcen y compactan en capas con herramientas de albañilería hasta formar una celda que al final de la jornada será cubierta con la tierra extraída de la zanja.
Se emplea el método combinado cuando las condiciones geohidrológicas, topográficas y físicas del sitio elegido para llevar a cabo el relleno sanitario son las adecuadas. Por ejemplo, se inicia con el método de trincher y posteriormente se continúa en la parte superior con el de área. Este método es considerado el más eficiente, ya que permite ahorrar el transporte del material de cobertura (siempre y cuando exista en el lugar) y aumentar la vida útil del sitio. En las figuras 7.2 y 7.3 se ilustran estos métodos.

Figura 7.1
Localización de las celdas y avance de la construcción del relleno
Figura 7.2
Método de trincha e inicio del llenado
7.1.2 Plan de construcción del relleno

La construcción del relleno sanitario debe planearse de manera que se pueda controlar su avance de conformidad con su diseño y uso futuro (figuras 7.4 a 7.8).
Figura 7.4
Plan de construcción para un sitio plano
La complejidad de cada proyecto está en función de las circunstancias, el tamaño, los recursos y el uso futuro del relleno sanitario.

Figura 7.5
Plan de construcción para una cantera profunda
Figura 7.6
Formación de los niveles de relleno en la cantera
Figura 7.7
Plan de manejo del terreno para la construcción del relleno sanitario manual mediante el método de trinchera
7.1.3 Construcción de terraplenes

Con el propósito de brindarle estabilidad al relleno sanitario manual construido con el método de área, se recomienda la construcción de varias terrazas o terraplenes de tres metros de altura, conformadas por dos o tres celdas de 1,0 a 1,5 metros cada una, respectivamente (figuras 7.9 y 7.10).
Cada terraza corresponderá a una fase de la construcción del relleno. Entre cada terraza se deja una berma o pasillo de 2 a 4 metros de ancho a fin de darle estabilidad a la obra.

Figura 7.9
Secuencia de la construcción de terraplenes para el llenado del terreno
7.1.4 Construcción de las celdas

La celda diaria se define como la unidad básica de construcción del relleno sanitario y está constituida por la cantidad de basura que se entierra en un día y por la tierra necesaria para cubrirla.

- **Dimensiones**

Las dimensiones de la celda diaria varían para cada caso y se definen, teóricamente, como un paralelepípedo; su ancho equivale al frente de trabajo necesario para que los vehículos recolectores (en estos casos no suelen ser más de dos) puedan descargar la basura al mismo tiempo. El largo (avance) está definido por la cantidad de basura que llega al relleno en un día y la altura se limita a un metro o metro y medio para lograr una mayor compactación. Con el propósito de ahorrar tierra, se recomienda que la celda sea cuadrada (figura 7.11).

- **Conformación de la celda diaria típica**

La basura se descarga en el frente de trabajo; luego los trabajadores la esparcen sobre la superficie de terreno al pie del talud o de las celdas ya terminadas en capas.
sucesivas de 0,20 a 0,30 metros; para ello se emplean horquillas (garfios de tres dientes), rastrillos (de ocho o diez dientes) o zapas. A continuación, se nivela la superficie superior y se compacta con el rodillo; de otro lado, las superficies laterales se compactan con pisones de mano hasta conseguir una superficie uniforme.

\[\text{Pendiente (\%) = \frac{\text{Vertical}}{\text{horizontal}} = \frac{3}{6} = 0,5 = 50 \%} \]

\[\text{Pendiente} = \frac{3}{6} = \frac{1}{2} = 1 : 2 \]

El esparcimento y compactación se realizan en capas horizontales o inclinadas con una pendiente de 3:1 ó 2:1 (avance:altura), lo cual proporciona mayor grado de compactación, mejor drenaje superficial, menor consumo de tierra y mejor contención y estabilidad del relleno (figura 7.12).

Al iniciar la construcción, siempre se le deberá proporcionar contención al relleno, apoyando cada celda en el talud del terreno natural o en las paredes de la trinchera y durante el avance sobre la celda ya terminada.

Figura 7.11
Celda diaria típica
Para concluir la celda, se cubre con una capa de tierra de 0,10 a 0,15 metros, se esparce con ayuda de carretillas de mano, palas y azadón y se compacta con un rodillo y pisones de mano, siguiendo el mismo procedimiento efectuado con la basura. La cobertura diaria controla la presencia de insectos, roedores y aves, así como las quemadas, el humo, los malos olores, el ingreso de agua y la basura dispersa.

El cubrimiento deberá realizarse todos los días al final de la jornada, después del ingreso de residuos. Al cabo, no deberán quedar RSM al descubierto y menos para el fin de semana.

No se debe ser exigente con la calidad del material de cobertura para un relleno sanitario manual; hay que aprovechar la tierra que se encuentre más accesible ya que es muy importante cubrir los desechos. La cantidad del material de cobertura necesario es de un metro cúbico de tierra por cada 4 o 5 metros cúbicos de RSM; es decir, entre 20 y 25% del volumen de residuos compactados.

La cobertura final será de 0,30 a 0,60 metros y se realizará en dos etapas, con capas de 0,15 a 0,30 metros y a intervalos de un mes, todo esto para tratar de cubrir los asentamientos que se produzcan en la superficie de la primera capa.

A continuación se describen algunos procedimientos para el cubrimiento del relleno:
Relleno sanitario de área

Si se excava en el propio sitio, los costos de acarreo de tierra para la cobertura son mínimos. Se recomienda extraerla de los taludes del terreno, conformando terrazas para evitar la erosión, al tiempo que se aumenta la capacidad del sitio y alarga su vida útil. También conviene aprovechar la tierra sobrante de las excavaciones de las construcciones en el área urbana. Esto se consigue con una declaración pública para recibir tierra en el relleno o contactando directamente a los constructores de la localidad. El costo del transporte debe estar a cargo de este último.

En los periodos de estiaje, se recomienda extraer y acumular tierra para cobertura con un tractor o retroexcavadora; de esta forma, se obtienen mejores rendimientos. La tierra puede ser acumulada en otra celda concluida y de ahí descender a la celda que se está por cerrar.

En época de lluvia ocurrirá a la inversa: el material acumulado se pierde por arrastre y se torna más pesado debido a la humedad, lo que dificulta su transporte. En estas circunstancias, lo aconsejable es extraer la cantidad de tierra que sea necesaria para cubrir la celda correspondiente.

Relleno sanitario de trinchera

Cuando se trabaja con este método, el material de cobertura está asegurado, ya que proviene de la excavación de la zanja; se recomienda acumularlo a un lado de ella o sobre una trinchera ya rellenada.

Compactación

Esta obra de saneamiento básico ha sido concebida para emplear recursos propios de la región y mano de obra poco calificada. Por consiguiente, la confor-
mación de las celdas y la compactación de la basura se harán con herramientas de albañilería.

Las densidades alcanzadas en el relleno sanitario manual serán relativamente bajas (400-500 kg/m3), pero suficientes para los fines propuestos. Entre los mecanismos más importantes que inciden en la compactación de los RSM en un relleno sanitario manual, están los siguientes:

- El tránsito de los vehículos sobre las celdas terminadas; por tanto, debe realizarse con mayor frecuencia en los periodos secos.
- El proceso de descomposición de los RSM debido a su alto contenido de materia orgánica.
- El peso propio de las celdas superiores sobre las inferiores.
- El almacenamiento de material de cobertura sobre las celdas ya terminadas.

7.2 Operación

7.2.1 Plan de operaciones

El relleno sanitario se debe llevar a cabo siguiendo un plan general de operaciones preestablecido o bajo la guía de un manual de operación, el cual debe ser flexible para que el supervisor pueda actuar según su criterio cuando haya que resolver situaciones inesperadas, como cambios de clima o emergencias.

En lo posible, todas las obras de infraestructura deben estar concluidas antes del inicio de la descarga de la basura en el nuevo relleno sanitario.

La basura y el material de cubrimiento deben ser descargados solo en el frente de trabajo autorizado, y a diferencia de la operación de un relleno convencional, que utiliza equipo pesado, se recomienda que los residuos no se depositen en la parte inferior del talud sino desde la parte superior de la celda ya terminada, a fin de facilitar el trabajo y poder así conformar la nueva celda.

Los siguientes son los pasos para la conformación de las primeras celdas diarias:

- Señalar en el terreno el área que ocupará la primera celda con la basura del día, de acuerdo con las dimensiones estimadas que se basan en el volumen de ingreso esperado y en el grado de compactación que se obtendrá.
Descargar la basura en el frente de trabajo, a fin de mantener una sola y estrecha área descubierta durante la jornada y evitar el acarreo a grandes distancias.

Esparrar la basura en capas delgadas de 0,2 a 0,30 metros y compactarla manualmente hasta obtener una altura de celda que mida entre 1 y 1,5 metros, procurando una pendiente suave en los taludes exteriores (por cada metro vertical se avanza horizontalmente 2 ó 3 metros).

Cubrir por completo la basura compactada con una capa de tierra de 0,1 a 0,15 metros de espesor cuando la celda haya alcanzado la altura máxima.

Compactar la celda hasta obtener una superficie uniforme al final de la jornada.

Una vez completada la primera celda, la segunda podrá ser construida de inmediato al lado o sobre la primera, siguiendo siempre el plan de construcción del relleno sanitario. En los periodos secos se recomienda que los vehículos transiten por encima de las celdas terminadas para darles una mayor compactación (figuras 7.13 a 7.35).

Operación del relleno mediante el método de área

![Figura 7.13](image_url)

Figura 7.13
Terreno preparado para la construcción del relleno
Figura 7.14
Primera descarga de RSM para la conformación de la celda diaria

Figura 7.15
Esparcimiento de los RSM en el área limitada para la celda diaria
Figura 7.16
Compactación de los RSM con un pisón de mano

Figura 7.17
Extracción de la tierra para cubrir los RSM
Construcción, operación y mantenimiento

Figura 7.18
Cubrimiento de los RSM con tierra

Figura 7.19
Compactación de la primera celda terminada con rodillo y pisón de mano
Figura 7.20
Construcción del drenaje de gases

Figura 7.21
Construcción de la segunda celda apoyada a un lado de la primera
Figura 7.22
Construcción del primer terraplén o terraza del relleno

Figura 7.23
Configuración final del relleno sanitario
Figura 7.24
Proceso de llenado de una zanja desde un extremo

Figura 7.25
Descarga de los RSM y conformación de la primera celda
Figura 7.26
Ingreso del vehículo por encima de la celda y descarga de la basura

Figura 7.27
Conformación de la capa superior de celdas

Figura 7.28
Zanja terminada
Figura 7.29
Descarga de los RSM a un costado de la zanja

Figura 7.30
Descenso y nivelación de los RSM en la zanja
Figura 7.31
Acarreo de tierra y cubrimiento de la basura

Figura 7.32
Compactación manual de los RSM en la zanja
Figura 7.33
Avance del llenado de la primera zanja

Figura 7.34
Descarga de la basura en el costado opuesto de la zanja de almacenamiento de la tierra de cobertura

Figura 7.35
Secuencia del llenado de las dos primeras zanjas
7.2.2 Personal (mano de obra)

El trabajo en el relleno sanitario puede ser hecho por obreros del municipio o por una pequeña firma de construcción (cooperativa de trabajadores) contratada para tal fin; el número de trabajadores necesarios depende de la cantidad de RSM que se debe enterrar, de las condiciones del clima y del método de operación del relleno. Es necesario contar con un responsable o supervisor que posea los conocimientos necesarios para la operación y el control del relleno.

Es importante capacitar a todos los trabajadores del servicio de aseo en las prácticas de construcción, operación y mantenimiento del relleno sanitario, así como en todo el proceso de manejo de RSM, destacando la importancia de cada actividad y el papel que deben desempeñar para lograr un buen trabajo.

7.2.3 Supervisión

Uno de los elementos más importantes en el relleno sanitario es el jefe o supervisor, quien debe organizar, dirigir y controlar las operaciones; de ahí que deba contar con el pleno respaldo de la administración municipal.

Si el relleno sanitario manual no tiene una buena administración y supervisión, suficientes recursos económicos y un adecuado mantenimiento técnico, se convertirá en un botadero de basura a cielo abierto.

Todo administrador o supervisor debe recordar que un trabajador rendirá mucho más si está motivado y si se le ofrecen buenas condiciones para el desempeño de su labor.

7.2.4 Herramientas de trabajo

El equipo para operar un relleno sanitario manual se reduce a una serie de herramientas o utensilios de albañilería, tales como: carretillas de llanta neumática, palas, picos, azadones, barras, tíjeras, pisones de madera, horquillas o rastrillos, zapas y un rodillo compactador (figuras 7.36 a 7.39).

La cantidad de estas herramientas está en función del número de trabajadores, y el de estos, a su vez, depende de la cantidad de RSM que se debe enterrar en el relleno.
Figura 7.36
Herramientas de trabajo para el relleno sanitario manual
Figura 7.37
Carretilla de llanta neumática de 120 litros

Figura 7.38
Barril de 55 galones acondicionado como rodillo compactador
7.2.5 Implementos de protección personal

Debil al tipo de actividades que se llevan a cabo en el relleno sanitario y al contacto directo con los RSM, los trabajadores se pueden ver expuestos a accidentes y a enfermedades infecto-contagiosas.

Por lo tanto, es importante proteger la seguridad y la salud de los trabajadores dotándolos como mínimo de guantes, botas, gorras o sombreros, mascarillas contra el polvo y, por lo menos, de dos uniformes al año. También hay que tener en cuenta las costumbres del lugar y las condiciones del clima (figura 7.40).

7.2.6 Operación en época de lluvias

En los periodos de lluvias se presentan los mayores problemas de operación en un relleno sanitario, a saber:
Figura 7.40
Implementos de protección de los trabajadores

- Difícil paso de los vehículos recolectores por encima de las celdas ya conformadas y posibles atascamientos debidos a la baja densidad alcanzada con la compactación manual.
- Dificultad para extraer y transportar el material de cobertura y arduo trabajo de conformación de las celdas. Estos factores conducen a un menor rendimiento por parte de los operarios.
- Solo es posible descargar la basura y el material de cobertura sobre la terraza, con lo que quedan retrasadas la conformación y compactación de las celdas. Si no se toman a tiempo medidas adecuadas, la basura dispersa y la presencia de aves carroñeras deteriorarán la apariencia del relleno.
- Mayor producción de lixiviado debido a la lluvia que cae directamente sobre las áreas rellenadas.

De ahí que sea necesario tomar las siguientes previsiones:

- Cubrir total o parcialmente la superficie del relleno sanitario con un techo de palma, plástico u otro material de la zona, tal como se explicó anteriormente.
- Reservar algunas áreas en los lugares menos afectados por las lluvias, con accesos conservados para poder operar en las peores condiciones.
- Construir una vía o camino artificial empleando troncos de madera o pequeños residuos de la construcción (escombros).
- Programar el movimiento de tierra para los periodos secos, tanto para la extracción del material de cobertura como para la apertura de trincheras, dejando para la época de lluvias solo el enterramiento de la basura.
- A manera de rutina, se debe cubrir las celdas con material plástico a fin de impedir que el agua de las lluvias se infiltre a través de la basura.
Mantener áreas de trabajo estrechas, apoyando las celdas sobre el talud del terreno y superponiendo tres o más celdas cerca de la vía interna para que el avance sea más vertical que horizontal (figura 7.41).

Durante uno o varios días a la semana, reforzar la mano de obra con una cuadrilla extra de dos o tres trabajadores, a fin de mantener el relleno en buenas condiciones mientras subsistan los factores adversos.

Figura 7.41
Reserva de áreas y construcción en altura de las celdas para la operación en periodos de lluvias
Construcción del camino artificial:

Armar un “empalado o entarimado” con troncos de madera de 3 metros de largo, unidos con un alambrón de 1/8 de pulgada de diámetro. Este camino se construye en módulos de 3 metros de longitud por 3 metros de ancho, siempre según las necesidades y el avance del relleno. Una vez armado este camino de acceso, hay que cubrirlo con cascajo para evitar que los vehículos patinen sobre él. Se recomienda que sean armados in situ, para lo cual el terreno deberá estar bien compactado y contar con un buen drenaje provisional (figuras 7.42 y 7.43).

Conviene aprovechar los escombros, producto de la demolición de viejas construcciones, ya que con ellos se pueden conformar y mantener algunas vías provisionales en el relleno, en especial sobre las plataformas de residuos.

Figura 7.42
Detalles para armar el módulo del “entarimado”
7.3 Mantenimiento

7.3.1 Herramientas

Una vez concluidas las labores diarias, las herramientas deberán dejarse limpias y, en caso de daños, deberán ser reparadas o sustituidas a la mayor brevedad.

7.3.2 Infraestructura externa y del relleno

Vía de acceso y camino interno

La vía de acceso y el camino interno al frente de trabajo, a las redes de drenaje pluvial y a la superficie terminada del relleno deben mantenerse en adecuadas condiciones de operación.

El costo de mantenimiento de la vía de acceso y el camino interno es menor que el de la reparación por daño de los ejes y resortes o que el deterioro del vehículo recolector ocasionado por el mal estado de la carretera o un volcamiento. Por tal motivo, es conveniente tener a disposición pedruscos, restos de demolición, troncos de madera y demás implementos. El frente de trabajo se debe mantener ordenado y sin material disperso.
? **Drenaje perimetral**

Se debe conservar en buen estado el drenaje pluvial periférico (canal en tierra y cunetas de la vía de acceso) y la superficie del relleno. Con el tiempo, estos canales se van obstruyendo por la erosión de los taludes de tierra, por el material que se arrastra en las épocas de lluvia o el disperso por el viento (papeles, plástico, etc.).

? **Material disperso**

Es importante mantener limpias las áreas adyacentes al frente de trabajo diario. Cuando se dejan acumular papeles arrastrados por el viento, el relleno adquiere mal aspecto. Al término de la jornada uno de los trabajadores debe recoger todos estos materiales dispersos y depositarlos en el sitio donde se construye la celda diaria (figura 7.44).

? **Drenaje del lixiviado**

Debido a la gran cantidad de material fino arrastrado por las aguas que percolan en el interior del relleno, los drenajes y zanjas de almacenamiento internas y externas, se van colmatando poco a poco, y se pueden obstruir con el tiempo. Como es obvio, la remoción de este material, por ahora, es impracticable, dentro del relleno, pero las zanjas externas sí pueden ser objeto de limpieza si se extrae todo el material fino sedimentado en ellas, para renovar su capacidad de almacenamiento y evaporación. Este material se deposita nuevamente en el relleno y puede servir para cubrir la celda diaria.

Figura 7.44
Recolección del material disperso en la superficie del relleno y alrededores
Drenaje de gases

Debido a los asentamientos del relleno y al tránsito vehicular por encima de las celdas y terraplenes ya terminados, las chimeneas de gases se van deformando e inclinando; de ahí que sea necesario mantenerlas verticales a medida que se eleva el nivel del relleno con el fin de evitar su obstrucción y total deterioro.

Instalaciones

La infraestructura y demás instalaciones, tales como la cerca de encerramiento del relleno, el cartel de presentación, la caseta de control, al igual que las instalaciones sanitarias, deben ser objeto de mantenimiento a fin de no menoscabar la imagen de la obra.

Acabado final y asentamiento

La colocación de las capas de la cobertura final y la siembra de pasto en los terraplenes terminados que ya no recibirán más residuos requieren gran atención porque contribuyen al buen funcionamiento del relleno y mejoran su aspecto. Es conveniente, entonces, acelerar el proceso de siembra colocando terrones con césped al menos en 10% del área, a fin de que la obra se armonice rápidamente con el paisaje natural del entorno (figura 7.45).

Figura 7.45
Siembra de vegetación en la superficie y taludes de los terraplenes terminados
Como ya se sabe, con el transcurso del tiempo, los RSM se descomponen (parte se transforma en gas y parte en líquido), por lo que la tierra de cubrimiento y la humedad penetran en los espacios vacíos del relleno, asentándolo. Después de dos años, el asentamiento se reduce mucho y prácticamente desaparece a los cinco años. Como este no es uniforme, se producen depresiones en la superficie de la obra, donde se acumula el agua de las lluvias; en consecuencia, se debe mantener nivelada toda la superficie del terreno y contar con buen drenaje que tenga una pendiente de 2 a 3%.

La administración municipal o la del relleno debe velar para que una vez concluida su vida útil se le dé el acabado final y el mantenimiento necesarios, con el objeto de que el terreno sea disfrutado por la comunidad, tal y como fue previsto al inicio del proyecto. De no ser así, la población se verá afectada y es probable que después rechace la construcción de nuevos rellenos, lo que obligaría a hacerlos en zonas bastante alejadas. Así, aumentarán los costos de transporte y del servicio de limpieza.

Al terminar la vida útil de un relleno sanitario, se debe colocar un nuevo cartel o letrero que informe a toda la población vecina y a los transeúntes que aquel se encuentra fuera de servicio. Pasado un tiempo prudencial en el que se haya conseguido su estabilización y se lo haya acondicionado como área recreativa o zona verde, se recomienda destacar que las nuevas obras están construidas sobre un relleno sanitario ya clausurado.
8. CLAUSURA
DEL BOTADERO
MUNICIPAL
Guía para el diseño, construcción y operación de rellenos sanitarios manuales
Por desgracia, las autoridades han descubierto muy tarde que puede ser muy difícil y costoso clausurar los sitios que han servido como botaderos municipales, la mayoría de los cuales fueron abiertos y utilizados sin criterios técnicos, ambientales ni sociales y ajenos a cualquier tipo de control.

Por lo general, la clausura del botadero municipal es ignorada en la planificación del relleno sanitario. Sin embargo, para que tenga éxito hay que cerrar los botaderos municipales, así como los demás sitios donde se abandona informalmente la basura. Para alcanzar este fin, se debe reservar los recursos económicos correspondientes, ayudar a los segregadores y tener presentes dos metas básicas: primero, dotar al sitio de la infraestructura mínima para evitar futuros daños al entorno y, segundo, tomar medidas que sean técnicas, prácticas y de bajo costo.

8.1 Divulgación de la clausura

Se debe informar tanto a la autoridad ambiental y de salud o a la institución reguladora, así como a la población en general, especialmente a los vecinos del lugar, sobre la clausura del botadero y el inicio de las operaciones del relleno sanitario. En estos casos, conviene:

- Mantener informado al concejo o cabildo municipal, con el apoyo de las autoridades de salud y ambiente e incluso el del párroco de la iglesia; esta es una buena estrategia para asegurar la viabilidad del proyecto.
- Preparar un programa de educación sanitaria y ambiental dirigido a las escuelas y a diversas acciones comunales sobre la importancia que tiene para la salud de todos y el cuidado de su territorio un buen servicio de recolección y disposición final de la basura, haciendo ver la necesidad de sostenerlo entre todos mediante el pago del servicio de aseo urbano.
- Explicar, a través de todos los medios de comunicación local (periódicos, emisoras, boletines, pregoneros...), que es urgente desterrar la práctica irresponsable del basurero a cielo abierto o la descarga de basura a las corrientes de agua, y destacar, en cambio, las ventajas de poder contar con un verdadero relleno sanitario.
- Hacer pública la clausura de los botaderos e informar que ya no se permitirá la disposición de basura en esos lugares. También conviene divulgar las sanciones que se aplicarán a quienes infrinjan las normas y regulaciones establecidas y dictadas al respecto.
- Informar oportunamente sobre la existencia del relleno sanitario manual para terminar así con la práctica del botadero a cielo abierto.
- Solicitar, e incluso exigir, a los propietarios o administradores de establecimientos comerciales, almacenes, bares y cantinas, etc., que entreguen su basura al
operator del servicio de recolección municipal o que ellos mismos la lleven al relleno sanitario. En las pequeñas poblaciones, estas personas suelen contratar a particulares para que retiren de sus establecimientos los RSM ahí generados, sin importales adónde los depositarán.

8.2 Pasos y acciones para la clausura del botadero

8.2.1 Segregadores de basura

En los países latinoamericanos, un gran número de personas pobres tiene en la recuperación de subproductos de la basura una fuente de ingresos para su subsistencia. Aunque en las poblaciones alejadas de los grandes centros urbanos este fenómeno puede no producirse, ya que no existe un mercado para estos materiales, en la mayoría de los municipios esta es una práctica constante debido a los altos índices de desocupación y a la extrema pobreza que hoy se vive en la Región.

Es común, entonces, encontrar personas en el basurero municipal que laboran y sobreviven en condiciones de miseria y a las que es imperativo ayudar con todos los medios posibles para que mejoren sus condiciones de vida. En tal sentido, los ingenieros y técnicos deben ceder el paso a los estudiosos de las ciencias sociales (sociólogos, trabajadores sociales y antropólogos). El perfil de estos profesionales los faculta para abrir espacios de concertación con estas personas, quienes por su baja condición social se toman desconfiadas e incluso resentidas con el resto de la sociedad.

Una de las principales estrategias para sacar a estas personas de su estado de marginalidad es organizarlas en cooperativas y asociaciones que se manejen con carácter empresarial; de esta manera, podrán estar en mejor posición para discutir con los intermediarios la comercialización de los materiales recuperados o incluso ya organizados. También podrán ofrecer otros servicios diferentes de acuerdo con sus oficios de origen y con las necesidades de la población.

En consecuencia, es fundamental tener presente que un proyecto de relleno sanitario y clausura de los botaderos no solo considera aspectos técnicos y económicos sino también sociales y ambientales.

8.2.2 Acciones de carácter correctivo

Con el fin de proteger la salud humana, las molestias ocasionadas y reducir el impacto ambiental por causa de los RSM y sus subproductos en la población vecina, un pequeño plan de clausura de los botaderos debe contener al menos una lista de acciones de carácter correctivo, el diseño final de la configuración del botadero y la
especificación de las obras, el equipo y el personal requeridos, un cronograma de trabajo y los costos estimados. A continuación se presentan las principales acciones que pueden ser ejecutadas por los trabajadores del municipio u otras personas contratadas:

? Levantar una cerca para limitar el acceso de personas extrañas que puedan seguir llevando al lugar sus RSM e impedir el ingreso de animales.
? Colocar un cartel, letrero o avisos donde se informe a la población que el basurero está clausurado y se indique la localización del nuevo sitio para la disposición de los RSM.
? Recoger los materiales ligeros que se encuentren dispersos en los alrededores y colocarlos en la masa de basura.
? Realizar un programa de exterminio de roedores y artrópodos, para lo cual se solicitará la asesoría de las autoridades de salud y saneamiento ambiental. Si esta etapa no se lleva a cabo, es posible que la fauna nociva emigre a las viviendas vecinas al no disponer ya de guarida y alimento (figura 8.1).
? Nivelar y compactar tanto la superficie como los taludes del botadero antes de descargar la tierra de cobertura. Para los terraplenes de basura deberá procurarse una pendiente de 3:1 ó 4:1 (horizontal:vertical) (figura 8.2).

Figura 8.1
Exterminio de roedores
En ocasiones será necesario brindarle contención a la masa de RSM desde la base de los taludes de los terraplenles de basura. Esto se consigue mediante un muro de gaviones o con la construcción de un pequeño terraplén de tierra compactada. Es importante asegurarse de que quede bien anclado al suelo a fin de evitar volcamientos (figura 8.3).

Figura 8.2
Pasos para el recubrimiento final de un botadero de basura

Figura 8.3
Contención y rehabilitación de un botadero de basura
En los casos en que se justifique, excavar algunos pozos de 0,20 a 0,50 metros y llenarlos con piedras o cascajo para que puedan funcionar como drenajes de gases. En lo posible, estos huecos tendrán la profundidad del terraplén de basura existente.

Asimismo, excavar en la parte inferior de los terraplenes una zanja longitudinal al pie del talud y extenderla unos cuantos metros, a fin de almacenar el lixiviado generado y permitir así su evaporación en los periodos secos mientras se estabiliza la masa de residuos.

Colocar cebos rodenticidas y fumigar el lugar. Después, cubrir con tierra y compactar bien toda la superficie y los taludes de los botaderos con una capa de 0,20 a 0,40 metros de espesor durante un lapso de 8 a 15 días, procurando una pendiente de 3% para mantener el buen drenaje del agua de las lluvias en la superficie.
Instalar drenajes perimetrales para evitar la infiltración del agua superficial a la masa de RSM ahí depositada.

Sembrar pasto o grama con el propósito de darle una mejor apariencia al sitio, disminuir la formación de lixiviados y evitar la erosión. Esta actividad tiene un efecto demostrativo para la población, porque podrá apreciar el lento final del botadero de basura.

8.3 Uso futuro del botadero clausurado

Si no se ha contado con el debido control durante la construcción de los terraplenes de basura, se recomienda que los botaderos clausurados de las pequeñas poblaciones sean transformados en zonas verdes con pasto y arbustos de raíces cortas.
9. ADMINISTRACIÓN Y CONTROL
Guía para el diseño, construcción y operación de rellenos sanitarios manuales
9.1 Administración

Es imprescindible que el relleno sanitario cuente con una adecuada administración si se quiere garantizar que este sea construido y operado de conformidad con las especificaciones y recomendaciones dadas en el estudio o informe final del proyecto, así como para tener la certeza de que se cumplan los objetivos propuestos. Siendo la disposición final de RSM la última actividad operacional del aseo, es obvio que el relleno debe estar a cargo del administrador de este servicio público. Generalmente, se trata de un funcionario de la oficina de limpieza o bien de otros servicios u obras públicas del municipio. No obstante, la construcción, operación y mantenimiento podría ser asumida por un operador particular.

La administración del relleno sanitario debe considerar las relaciones públicas como un factor prioritario tanto durante su construcción como después de su clausura, ya que la opinión pública juega un papel decisivo en la promoción y divulgación de las bondades de esta obra de saneamiento básico.

El administrador o responsable de la limpieza pública siempre debe estar al tanto de las operaciones del servicio de aseo urbano y, por supuesto, velar por la calidad del relleno sanitario.

9.1.1 Recursos

En los pequeños municipios, uno de los problemas administrativos más comunes es la falta de planificación del abastecimiento de materiales, de lo que depende todo buen trabajo de construcción, operación y mantenimiento de las obras.

De ahí que el administrador tenga que prever los recursos necesarios en el diseño del presupuesto anual de municipio. En él se debe incluir el costo de las herramientas, piezas y otros materiales de trabajo que se requieren en el relleno sanitario, así como un rubro de gastos mínimos para atender situaciones especiales e imprevistos.

9.1.2 Supervisión

A fin de mejorar la calidad del servicio de aseo en los municipios pequeños, se recomienda contratar a un tecnólogo o promotor de saneamiento, quien se desempeñará como jefe o supervisor de limpieza.
Esta persona se encargará de coordinar tanto las operaciones del relleno sanitario como todo el servicio de limpieza y servirá de interlocutor entre los usuarios, los trabajadores y la administración.

Si el relleno sanitario manual no cuenta con una buena supervisión para su operación y mantenimiento ni se le destinan los recursos necesarios, muy pronto se convertirá en un botadero a cielo abierto.

Entre las diversas actividades que el supervisor de limpieza realizará, figuran:

- Dar las instrucciones y distribuir adecuadamente las tareas asignadas sobre la base de la programación definida por la dirección en lo que respecta a cada una de las actividades del servicio (recolección, transporte y disposición final de la basura).
- Velar por la eficiencia y calidad del servicio, planificando el abastecimiento y el mantenimiento de materiales, herramientas y equipos necesarios para el buen desempeño de las labores.
- Aplicar los controles del caso tanto en la recolección y el transporte como en el propio relleno sanitario.
- Informar periódicamente sobre el desarrollo de las actividades y anomalías que se presenten.

Hay que tratar de conservar para el servicio a las personas que hayan recibido capacitación en las distintas actividades de la limpieza urbana, especialmente en la construcción y operación del relleno sanitario; de lo contrario, su falta se traducirá en bajas eficiencias y mayores costos.

9.1.3 Salud y seguridad de los trabajadores

El contacto de los trabajadores del relleno sanitario con los RSM es una actividad que merece toda la atención del administrador a fin de proteger su salud y seguridad.

Las causas de riesgo pueden tener dos orígenes: condiciones inseguras de trabajo y negligencias del propio trabajador.
Las principales condiciones de inseguridad en el trabajo son:

- Recoger residuos con las manos, sin el empleo de guantes, puede producir cortaduras si se tropieza con vidrios rotos u objetos punzocortantes.
- Trabajar en jornadas excesivamente largas, con la consiguiente fatiga de los trabajadores.
- No llevar ropa adecuada ni equipos personales de protección.
- No realizar el aseo personal al terminar la jornada de trabajo.
- Ingerir alimentos en el frente de trabajo y no lavarse las manos con agua y jabón.

Entre los actos de negligencia más comunes del propio trabajador se encuentran:

- No usar la ropa ni el equipo personal de protección.
- Ingerir bebidas alcohólicas durante la jornada de trabajo o llegar embriagado.
- Levantar en forma indebida objetos pesados.
- No prestar atención a la descarga del camión recolector de residuos.
- No dar un buen mantenimiento a los equipos y herramientas de trabajo.
- Permitir el ingreso de personas ajenas al relleno sanitario.
- Recibir RSM no previstos en el proyecto de relleno sanitario, que por sus peligrosas características pueden afectar a los trabajadores y al ambiente.
- Usar la ropa y el equipo de seguridad personal fuera del sitio de trabajo.
- Quemar los RSM.
- Usar los RSM para alimentar animales.
- Fumar durante la jornada de trabajo.

Se deben identificar cuidadosamente todas las condiciones inseguras y las causas más comunes de accidentes de trabajo a que está expuesto el trabajador con el objeto de darles la solución adecuada.

Recomendaciones para minimizar los problemas anteriores:

- Evaluar las causas de accidentes más comunes y adoptar las medidas preventivas del caso.
- Elaborar normas de seguridad de trabajo, con las respectivas indicaciones para el uso de equipo.
- Proveer al personal de un vestuario y duchas donde asearse y cambiarse de ropa después de la jornada de trabajo, a fin de no llevar a sus hogares algún tipo de contaminación.
¿ Establecer un programa de exámenes médicos para identificar, prevenir o curar las posibles enfermedades que se relacionan con su actividad.

¿ Mejorar la calidad del equipo y herramientas de trabajo.

¿ Dotar a los trabajadores de los implementos mínimos de protección personal, tales como guantes, botas, gorra o sombrero y, por lo menos, dos uniformes al año.

¿ Llevar un registro sencillo de los accidentes y contingencias laborales en el que se expliquen sus causas con el objeto de prevenir hechos similares en el futuro

El supervisor controlará el cumplimiento de las normas de seguridad en el trabajo.

9.1.4 Indicadores de productividad

Para mantener un adecuado manejo de las distintas actividades, el administrador del servicio de limpieza tendrá que analizar dos aspectos fundamentales: los costos y la productividad.

En el caso del servicio de limpieza, es necesario tener algunos indicadores que permitan establecer comparaciones en el tiempo del rendimiento y mejoramiento alcanzados en las distintas actividades. En tal sentido, el relleno sanitario, como obra en permanente construcción y operación que es, también debe contar con esta herramienta administrativa, a fin de evaluar rendimientos y costos, y aprovechar al máximo los recursos disponibles.

Es necesario, pues, realizar una serie de medidas y controles que permitan detectar las fallas, aplicar correctivos y evaluar su eficacia, con el propósito de obtener los mejores rendimientos y prestar un buen servicio al menor costo posible.

En el cuadro 9.1 se presentan algunos indicadores útiles para dirigir y administrar el relleno sanitario.

9.2 Controles del relleno sanitario

A pesar de la poca magnitud de esta obra de saneamiento básico, es muy importante la gestión de RSM que permite. De ahí que deba ser evaluada periódicamente para que pueda operar en las mejores condiciones.
Cuadro 9.1
Algunos indicadores de gestión de los RSM y disposición final

<table>
<thead>
<tr>
<th>Indicador</th>
<th>Unidades</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cobertura servicio de recolección</td>
<td>%</td>
</tr>
<tr>
<td>= (\frac{Población servida (hab.)}{Población total (hab.)} \times 100)</td>
<td></td>
</tr>
<tr>
<td>1. Producción total de RSM</td>
<td>kg/día</td>
</tr>
<tr>
<td>= (Población (hab.) \times \text{producción per cápita (kg/hab./día)})</td>
<td></td>
</tr>
<tr>
<td>2. Porcentaje de financiación del relleno sanitario</td>
<td>%</td>
</tr>
<tr>
<td>= (\frac{\text{Inversión inicial para el relleno sanitario}}{\text{Total presupuesto municipal}} \times 100)</td>
<td></td>
</tr>
<tr>
<td>3. Cobertura de disposición final</td>
<td>%</td>
</tr>
<tr>
<td>= (\frac{\text{toneladas dispuestas en el relleno sanitario}}{\text{toneladas recolectadas}} \times 100)</td>
<td></td>
</tr>
<tr>
<td>4. Volumen o peso de RSM que se reciben diariamente en el relleno sanitario</td>
<td>m³ o ton</td>
</tr>
<tr>
<td>5. Eficiencia personal en disposición final</td>
<td>t/hom-día</td>
</tr>
<tr>
<td>= (\frac{\text{toneladas dispuestas el relleno sanitario}}{\text{número de trabajadores en el relleno}} \times 100)</td>
<td></td>
</tr>
<tr>
<td>6. Costo de disposición final</td>
<td>$/t</td>
</tr>
<tr>
<td>= (\frac{\text{costo de la operación del relleno sanitario x año}}{\text{toneladas dispuestas x año}} \times 100)</td>
<td></td>
</tr>
<tr>
<td>7. Costo de capital por tonelada de basura</td>
<td>$/t</td>
</tr>
<tr>
<td>= a lo estimado en la columna (g) de la tabla 9.1</td>
<td></td>
</tr>
<tr>
<td>8. Costo unitario total del relleno</td>
<td>$/año</td>
</tr>
<tr>
<td>Cut = fórmula [9-10]</td>
<td></td>
</tr>
</tbody>
</table>

9.2.1 Control de la construcción

Es importante mantener el alineamiento y la altura de las plataformas, así como los niveles señalados para las alturas de las celdas, los cuales podrán ser controlados con base en los planos de diseño del proyecto o simplemente observándolos con la ayuda de estacas en el terreno. Las pendientes de los taludes deben brindar la estabilidad requerida de acuerdo con la topografía del terreno (figura 9.1).
9.2.2 Control de operaciones

- Ingreso de RSM y tierra.
- Cantidad (peso y volumen estimados).
- Procedencia (sector del área urbana).
- Tipo de residuos (domésticos, comerciales, mercado, etc.).
- Tipo de transporte (compactador, volquete, tracción animal, etc.).

No se recibirá RSM que no hayan sido autorizados por la administración del relleno sanitario manual.

Figura 9.1
Estacas en el terreno para controlar la construcción de los terraplenes
Ingreso de vehículos y visitantes.
Horario del personal empleado.
Mantenimiento de las herramientas.
Ocurrencias extraordinarias (atascamiento del vehículo recolector, incendio, aguaceros, etc.).

Cada trabajador es responsable de sus herramientas e implementos de trabajo.

9.2.3 Control de costos

Uno de los aspectos que los administradores municipales suelen descuidar es el relativo a la recolección y el análisis de rendimientos y costos del servicio de limpieza. Esta omisión es un gran problema ya que se trata de un subsidio que en no pocas ocasiones devora gran parte del limitado presupuesto del municipio.

Por lo tanto, es necesario enfatizar la importancia de recolectar este tipo de información, tanto durante la etapa de inversión como de construcción, operación y mantenimiento, puesto que su análisis nos permite buscar los máximos rendimientos con una mayor economía.

Por otro lado, lo que el municipio invierte en el relleno sanitario manual oscila entre 10 y 20% del presupuesto general para limpieza, lo cual sirve para demostrar que los costos de esta obra no son los elevados que muchos administradores locales creen.

Es fundamental llevar cuentas separadas de cada servicio público municipal y, en lo posible, de cada actividad correspondiente al aseo urbano. De esta forma, se podrá calcular el valor de su tarifa sobre la base de costos reales. Esto es vital para garantizar la solvencia económica, la calidad y la sostenibilidad de este servicio.

Factores para estimar los costos operacionales

- Operación y mantenimiento (personal, infraestructura, mantenimiento de equipos, herramientas, construcciones auxiliares, etc.).
- Herramientas (adquisición y reposición).
- Transporte de material de cobertura.
Todo usuario del servicio de aseo urbano debe pagar una tarifa de acuerdo con su nivel socioeconómico. En ningún caso este servicio debe ser gratuito.

9.2.4 Control del ambiente

Control de la calidad de las aguas subterráneas y superficiales. Es recomendable establecer un programa de muestreo de la calidad de las aguas. Las muestras se pueden extraer mensualmente y, de ser posible, antes, durante y un año después de terminada la vida útil del relleno. Si después del primer año de operación se confirma que no hay contaminación, se podrá disminuir la frecuencia del muestreo e incluso suspenderlo. Los parámetros que se analizarán

Figura 9.2
Control de incendios
serán aquellos exigidos por la autoridad local o regional de control de la contaminación de las aguas (cf. capítulo 5, numeral 5.10.2).

\begin{itemize}
 \item \textit{Salida de gases}. Las chimeneas o tubos de ventilación deben ser observadas permanentemente para verificar su funcionamiento.
 \item \textit{Armonía con el paisaje natural}. La construcción del relleno sanitario debe tener un buen aspecto para no deteriorar el paisaje local.
 \item \textit{Control de quemases e incendios}. En el relleno se debe evitar la quema de materiales combustibles como papel, cartón, plásticos, caucho o cualquier otro elemento, ya que pueden generar incendios, además de malograr su aspecto. Los incendios deben ser sofocados con tierra.
\end{itemize}

Conviene recordar que la descomposición de la basura produce metano, que es un gas combustible, y que cuando se enciende fuego o se fuma cerca de los drenajes de gases y lixiviados, puede haber serios accidentes.

\begin{itemize}
 \item \textit{Control de insectos, roedores y aves}. Para combatirlos no se deben utilizar insecticidas o rodenticidas, ya que su empleo contamina el ambiente y a la larga hace que estos bichos desarrollen una mayor resistencia a los agentes químicos, lo que a largo plazo dificulta su control; de ahí que su uso será mínimo. En realidad, la mejor forma para controlar estos vectores es cubrirlos con tierra (figura 9.3).
\end{itemize}

![Figura 9.3](image)

Control de vectores de interés sanitario
Las moscas y los roedores suelen llegar en los vehículos recolectores de basura, por lo que en un primer momento se recomienda, como práctica excepcional, fumigar y colocar rodenticidas en el área del relleno.

La presencia de estos insectos y roedores, al igual que la de aves, que se alimentan de desperdicios y carroña, es un indicador de la falta de la cubierta de tierra y de la deficiente calidad en el mantenimiento del relleno sanitario.

Control de la estabilidad de taludes. Los terraplenes conformados con la basura y la cubierta de tierra tienden a moverse hacia abajo debido a la fuerza de la gravedad, lo que se capta a simple vista observando los taludes. Por lo tanto, si se detecta pérdida de cobertura, afloramiento de basura, abultamiento de la superficie del talud o un avance del terraplén en su base inferior, se debe corregir esto removiendo el material suelto y volviendo a cubrir y compactar dicho talud. En algunos casos se puede utilizar un muro de gaviones o llantas usadas amarradas con cuerdas plásticas y, también, sembrar vegetación.

![Control de la estabilidad de taludes con llantas de automotores](image)

Figura 9.4

Controles para la estabilidad de taludes con llantas de automotores
Control de asentamientos diferenciales y condiciones de la cubierta. Esta actividad se desarrollará tan pronto como se hayan terminado los terraplenes o el mismo relleno con el objeto de identificar alguna falla (deslizamiento) en la estabilidad, agrietamientos o depresiones en la superficie. Tanto las depresiones como las grietas favorecen la acumulación de las aguas de lluvia sobre la superficie del relleno y permiten su infiltración, lo que contribuye a la generación de lixiviado. En consecuencia, se debe nivelar la superficie y restaurar la vegetación (figura 9.4).

9.3 Análisis de costos

Al igual que en cualquier otro diseño, se debe incluir una evaluación o un presupuesto como información básica del proyecto. Los costos se dividen en: costos de inversión y costos de operación.

Para los costos de inversión, es necesario asociar cada concepto o ítem con la vida útil (en este caso, la del relleno sanitario), puesto que las obras de infraestructura serán construidas para el periodo de diseño.

9.3.1 Costos de inversión

- Estudios y diseños (incluye selección del sitio y levantamiento topográfico).
- Adquisición del terreno.
- Preparación del terreno y obras complementarias.

![Figura 9.5](Identificación de fallas del talud)
9.3.2 Costos de operación y mantenimiento

- Mano de obra.
- Herramientas.
- Elementos de protección.
- Drenaje de gases y drenajes secundarios.
- Mantenimiento.
- Adecuación periódica del sitio (caminos, drenajes, excavaciones, etc.).

9.3.3 Costos finales de clausura del relleno sanitario

- Cobertura final.
- Drenajes.
- Engramado o cubierta vegetal.
- Proyecto paisajístico.

9.4 Preparación del presupuesto

En primer lugar, el proyectista o persona que ha diseñado el relleno deberá preparar un presupuesto de inversión para presentárselo al alcalde o a la institución responsable de la obra. En el cuadro 9.2 se han listado en la columna (a) los conceptos de inversión, y en las columnas (b) y (c) los costos de cada uno. La suma de la
Administración y control

La columna (c) dará la inversión inicial o capital necesario para iniciar los trabajos. A continuación se describe cada uno de los conceptos de la obra.

- **Estudios y diseños.** Los estudios previos y el proyecto ejecutivo del relleno le irrogarán una serie de costos al municipio, los cuales variarán según se contrate a un especialista o se consiga el apoyo de alguna institución que proporcione este tipo de asistencia técnica. En otros casos, el municipio solo pagará los viáticos o el levantamiento topográfico u otros estudios que sean requeridos.

- **Adquisición del terreno.** En la columna (b) se pondrá el costo del terreno si este es particular; si es municipal, el costo será cero. Otra posibilidad es que el terreno sea alquilado y entonces el valor en la columna (b) será cero, y el costo debe ser trasladado a los costos recurrentes o de operación.

- **Preparación del terreno y obras complementarias.** Este concepto se estima cuantificando los volúmenes de obra de cada uno de los componentes como: limpieza y desmonte, movimiento de tierras, vías de acceso, etc., los cuales deben ser colocados en la columna (b) del cuadro 9.2 (este se usa como tabla auxiliar para facilitar el llenado del cuadro 9.1). Para estimar las cantidades de obra, se utilizan los planos constructivos, principalmente los similares a los de las figuras 5.4 y 5.5, así como los planos de detalles.

En la columna (c) se han colocado las unidades con que se suelen medir los volúmenes, aunque pueden ser cambiados si fuera necesario.

En la columna (d) se colocan los costos unitarios de obra. Estos costos generalmente son conocidos en la localidad por los ingenieros, maestros de obra y personas relacionadas con la construcción de obras públicas o privadas. Muchas secretarías, corporaciones de desarrollo, etc., tienen catálogos de costos unitarios, que son revisados periódicamente. Si no se cuenta con estos datos, habrá que calcularlos con manuales o con los que manejan los fabricantes.

Finalmente, en la columna (e) del cuadro 9.2 se coloca el costo de cada componente, que es igual al producto de las columnas (b) y (d). Los costos obtenidos se colocan en la columna (b) del cuadro 9.1.

- **Clausura del botadero.** Cerrar un botadero a cielo abierto es relativamente fácil si se cuenta con la maquinaria y el material de cobertura necesarios. Sin embargo, para estimar las cantidades de obra y evitar daños al ambiente o riesgos a la salud, es indispensable hacer un plan que incluya el uso posterior del sitio. Para tal efecto, también habría que emplear el cuadro 9.2 y, si es preciso, agregarle algunos conceptos.
Cuadro 9.2
Costos de inversión

<table>
<thead>
<tr>
<th>CONCEPTO</th>
<th>Inversión inicial (US$)</th>
<th>Costos unitarios de inversión (US$)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Parcial (a)</td>
<td>Total (b)</td>
</tr>
<tr>
<td></td>
<td>Vida útil (anos) (c)</td>
<td>Costo anual (US$/año) (d)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>IMA(^a) (US$/año) (e)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Costo capital (US$/año) (f)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Rendimiento anual (t/año) (g)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Rendimiento anual (t/año) (h)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Rendimiento anual (t/año) (i)</td>
</tr>
<tr>
<td>a) Estudios y diseños</td>
<td></td>
<td></td>
</tr>
<tr>
<td>b) Adquisición del terreno</td>
<td></td>
<td></td>
</tr>
<tr>
<td>c) Instalación y obras preparatorias</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Limpieza y desmonte</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Movimiento de tierra (alquiler de equipo)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Vías de acceso</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Drenaje pluvial</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Drenaje de lixiviados</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Drenaje de gases</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Cerca y portón de entrada</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Arborización</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Caseta de control y almacenamiento de materiales</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Instalaciones sanitarias</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Cartel de presentación</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Otros</td>
<td></td>
<td></td>
</tr>
<tr>
<td>d) Adquisición de equipos y herramientas</td>
<td></td>
<td></td>
</tr>
<tr>
<td>e) Clausura del basurero municipal</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Estudios y diseño</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Alquiler de maquinaria / mano de obra</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Saneamiento del lugar (fumigación)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Material de cobertura</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Siembra de vegetación</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

\(^a\) Interés Medio Anual (US$/año), ecuación 9.3.
Cuadro 9.3
Costo de apertura del relleno y de clausura del basurero

<table>
<thead>
<tr>
<th>Concepto</th>
<th>Cantidad de obra (a)</th>
<th>Unidad (b)</th>
<th>Costo Unitario (US$/unidad) (c)</th>
<th>Costo (US$) (d)</th>
</tr>
</thead>
<tbody>
<tr>
<td>a) Apertura del relleno</td>
<td></td>
<td>m²</td>
<td></td>
<td></td>
</tr>
<tr>
<td>· Limpieza y desmonte</td>
<td></td>
<td>m³</td>
<td></td>
<td></td>
</tr>
<tr>
<td>· Movimiento de tierra</td>
<td></td>
<td>m</td>
<td></td>
<td></td>
</tr>
<tr>
<td>· Vía de acceso</td>
<td></td>
<td>m</td>
<td></td>
<td></td>
</tr>
<tr>
<td>· Drenaje pluvial</td>
<td></td>
<td>m</td>
<td></td>
<td></td>
</tr>
<tr>
<td>· Drenaje de lixiviado</td>
<td></td>
<td>m</td>
<td></td>
<td></td>
</tr>
<tr>
<td>· Drenaje de gases</td>
<td></td>
<td>m</td>
<td></td>
<td></td>
</tr>
<tr>
<td>· Cerca</td>
<td></td>
<td>m</td>
<td></td>
<td></td>
</tr>
<tr>
<td>· Portón de entrada</td>
<td></td>
<td>unidad</td>
<td></td>
<td></td>
</tr>
<tr>
<td>· Arborización</td>
<td></td>
<td>m</td>
<td></td>
<td></td>
</tr>
<tr>
<td>· Caseta de control</td>
<td></td>
<td>m²</td>
<td></td>
<td></td>
</tr>
<tr>
<td>· Instalaciones sanitarias</td>
<td></td>
<td>unidad</td>
<td></td>
<td></td>
</tr>
<tr>
<td>· Cartel</td>
<td></td>
<td>unidad</td>
<td></td>
<td></td>
</tr>
<tr>
<td>· Otros</td>
<td></td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>b) Adquisición de equipos y herramientas</td>
<td></td>
<td>unidad</td>
<td></td>
<td></td>
</tr>
<tr>
<td>c) Clausura del basurero municipal</td>
<td></td>
<td>unidad</td>
<td></td>
<td></td>
</tr>
<tr>
<td>· Estudios y diseño</td>
<td></td>
<td>unidad</td>
<td></td>
<td></td>
</tr>
<tr>
<td>· Alquiler de maquinaria / mano de obra</td>
<td></td>
<td>horas</td>
<td></td>
<td></td>
</tr>
<tr>
<td>· Saneamiento del lugar (fumigación)</td>
<td></td>
<td>unidad</td>
<td></td>
<td></td>
</tr>
<tr>
<td>· Material de cobertura</td>
<td></td>
<td>m²</td>
<td></td>
<td></td>
</tr>
<tr>
<td>· Siembra de vegetación</td>
<td></td>
<td>m²</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Finalmente, una vez completado el cuadro 9.2, se vacían sus resultados en el cuadro 9.3, donde la suma de la columna (c) dará la inversión inicial que habrá que conseguir. Esta inversión podría obtenerse a través de un préstamo que inevitablemente, incluiría intereses.

9.4.1 **Estimación de los costos unitarios de inversión**

Primero se calculan los costos unitarios de inversión (que incluyen los intereses) para luego añadirlos en los costos totales del relleno sanitario y en el cálculo del costo de la tarifa que se tendrá que cobrar al usuario. Para esto es necesario calcular el costo anual u horario y después el costo unitario según la producción o rendimientos, es decir:

\[
C_n = \frac{C_{total}}{n} \quad [9-1]
\]
donde:

\[C_n = \text{Costo anual o costo horario según las unidades de } n \]
\[C_{\text{total}} = \text{Costo total del concepto} \]
\[n = \text{Vida útil de la obra o del concepto (p. ej., entre 5 y 10 años para un relleno sanitario)} \]

Para el costo unitario, se tendrá:

\[C_u = \frac{C_n}{R} \quad [9-2] \]

donde:

\[C_u = \text{Costo unitario (para rellenos US$/ton)} \]
\[R = \text{Rendimiento por un año o por hora (p. ej., para un relleno manual de 10 t/día que trabaja 300 días al año, sería } \]
\[10 \times 300 = 3.000 \text{ t/año)} \]

El cuadro 9.1 muestra los costos totales en las columnas (b) y (c). Los tiempos \(n \) de la fórmula [9.1] aparecen en la columna (d) de la misma tabla. En general, \(n \) coincide con la vida útil del relleno sanitario; sin embargo, hay algunos elementos que pudieran tener una duración menor. En general, se recomienda depreciar todo en la vida útil del relleno. El costo anual, también llamado depreciaación anual, se calcula en la columna (e) con la fórmula [9-1], es decir, dividiendo la columna (c) entre la (d).

En la columna (f) del cuadro 9.1 se ve el interés medio anual que permite la recuperación del capital invertido. El interés puede ser calculado así:

\[IMA = \frac{C_{\text{total}} (n + 1)}{2n} \quad i \quad [9-3] \]

donde:

\[IMA = \text{Interés medio anual (US$/año)} \]
\[C_{\text{total}} = \text{Costo total del concepto} \]
\[n = \text{Vida útil del concepto en años (vida útil del relleno)} \]
\[i = \text{Interés anual} \]

Con la suma de las columnas (e) y (f) se obtiene la columna (g), o sea, el costo anual del capital. Este también puede ser calculado directamente a partir del costo
total (d) y usando las tablas o las fórmulas de recuperación del capital. En los libros de ingeniería económica hay tablas que dan el factor de recuperación del capital (FRC), en función del interés anual y de la vida útil. También es posible calcularlo con las fórmulas:

\[C_c = C_{total} (FRC) \] \hspace{1cm} [9-4]

\[FRC = \frac{i}{1 - \left(1 + i\right)^n} \] \hspace{1cm} [9-5]

donde:

- \(C_c \) = Costo de capital (US$/año)
- \(C_{total} \) = Costo total (US$)
- \(i \) = Interés anual del préstamo o interés bancario municipal (si el interés fuera de 13%, \(i = 0.13 \))
- \(n \) = Vida útil en años

Una vez estimado el costo del capital mediante cualquiera de los métodos anteriores (col. (g), cuadro 9.1), se divide entre la producción o rendimiento anual \(R \) (véase col. 5, tabla 5.1) para obtener el costo unitario en la columna (i) del cuadro 9.1. Como podrá observarse, el rendimiento anual —o sea, la cantidad de toneladas que recibe la obra— aumentará de año en año, mientras que el costo unitario de capital bajará anualmente. Si se quiere evitar esto, se puede considerar un rendimiento \(R \) como promedio de toda la vida útil del relleno.

9.4.2 Estimación de los costos de operación

Los costos de operación o costos recurrentes sirven para estimar el presupuesto anual requerido a fin de poder operar correctamente el relleno sanitario y cobrar una tarifa justa.

9.4.2.1 Costos anuales de la mano de obra

Se calculará el número de personas que trabajará en el relleno sanitario tal como se indica en el capítulo 5, numeral 12. Los rendimientos ahí propuestos podrán modificarse según las experiencias y las condiciones específicas de cada lugar:

\[C_{mo} = 12 N (Fps \ Sm) + 12 P (Fps \ Ss) \] \hspace{1cm} [9-6]
donde:

\[
C_{mo} = \text{Costo anual de la mano de obra (US$/año)}
\]

\[
N = \text{Número de trabajadores en el relleno, según numeral 5.12}
\]

\[
S_m = \text{Salario mínimo legal local (US$/mes)}
\]

\[
F_{ps} = \text{Factor de prestaciones sociales general/entre 1,4 y 2,0. Incluye seguridad social, fondo de pensiones, vacaciones, etc.}
\]

\[
P = \text{Proporción del tiempo o de la jornada que el supervisor dedica al relleno (entre 0,2 y 0,25 en rellenos pequeños)}
\]

\[
S_s = \text{Salario mensual del supervisor (US$/mes)}
\]

9.4.2.2 Herramientas y elementos de protección

La cantidad de herramientas utilizadas dependerá del volumen de RSM que ingresan al relleno sanitario y son como las descritas en el capítulo 7, numeral 7.2.4. Pueden durar alrededor de un año, aunque eso dependerá del uso que en última instancia se les dé.

Los elementos de protección podrían ser dos o tres uniformes por año, botas, gafas, mascarillas y guantes. Sus costos serán calculados según los precios locales.

9.4.2.3 Drenajes, caminos, maquinarias y otros

Cada año deberán ser evaluados a partir de los planos y el avance de la obra, los costos de los drenajes y caminos necesarios, el alquiler de horas-máquina y los materiales y la mano de obra temporal que se requieren para estas obras.

La suma de los tres conceptos anteriores nos dará el costo anual o presupuesto anual de operación:

\[
C_{ao} = C_{mo} + C_h + C_m + \text{Otros} \quad [9-7]
\]

donde:

\[
C_{ao} = \text{Costo anual de operación (US$/año)}
\]

\[
C_{mo} = \text{Costo anual de mano de obra (US$/año)}
\]

\[
C_h = \text{Costo anual de herramientas (US$/año)}
\]

\[
C_m = \text{Costo anual de maquinaria (US$/año)}
\]

\[
\text{Otros} = \text{Otros costos anuales (US$/año)}
\]
9.4.2.4 Costos unitarios de operación

El costo unitario de operación será el costo anual antes calculado entre las toneladas enterradas durante el año.

\[Cuo = \frac{Cao}{R} \] \hspace{1cm} [9-8]

donde:

- \(Cuo \): Costo unitario de operación (US$/t)
- \(Cao \): Costo anual de operación (US$/año)
- \(R \): Rendimiento anual (t/año)

9.4.3 Costos totales y tarifas

9.4.3.1 Costos totales

Los costos anuales y unitarios totales serán:

\[Cat = Cn + Cao \] \hspace{1cm} [9-9]
\[Cut = Cu + Cuo \] \hspace{1cm} [9-10]

donde:

- \(Cat \): Costo anual total (US$/año)
- \(Cut \): Costo unitario total (US$/t)
- \(Cn \): Costos anuales de capital según fórmula [9-1], (US$/año)
- \(Cu \): Costos unitarios de capital según fórmula [9-2], (US$/t)
- \(Cao \): Costos anuales de operación según fórmula [9-7], (US$/año)
- \(Cuo \): Costos unitarios de operación según fórmula [9-8], (US$/t)

9.4.3.2 Tarifas

La estructura de costos permite calcular el valor real de las distintas actividades del servicio de aseo urbano. En todos los casos, es preciso considerar de modo realista el grado de morosidad y el porcentaje de la población que no paga por este servicio. Las tarifas que hay que aplicar varían según las políticas que establezca el municipio, y pueden ser:

1. **Recuperación total sin subsidio cruzado**

Aquí las familias pagan el costo real del servicio, independientemente de su situación económica. La tarifa media mensual sería:
Trt = \frac{Cat}{12 \times Fcs} \quad [9-11]

donde:

Trt = Tarifa mensual familiar para recuperación total (US$/fam-mes)
Cat = Costo anual total del servicio según fórmula [9-9], (US$/año)
Fcs = Número de familias con servicio en la población.

Recuperación total con subsidio cruzado

Aquí las familias con mayores ingresos pagan más y aquellas con menores ingresos, menos, pero de tal modo que los ingresos totales por tarifas cubran los costos de operación e inversión (Cat). Una manera de lograr esto es asociando la cobranza a otro servicio (de preferencia el eléctrico, que tiene mayor cobertura). El porcentaje que habría que aplicar sobre el costo del otro servicio estaría dado por:

Inc = \frac{Cat}{los \times (fcc)} (100) \quad [9-12]

donde:

Inc = Incremento en la tarifa domiciliaria (%)
Cat = Costos anuales del servicio de aseo (US$/año)
los = Ingresos anuales por cobranza domiciliar del otro servicio
Fcc = Factor del costo de la cobranza, es decir, los costos que debe cobrar el otro servicio por personal adicional, etc.

Los otros casi siempre incluyen un subsidio cruzado. La cobranza por aseo a industrias y centros especiales tendría que hacerse por separado, sobre todo en el caso de los grandes generadores y consumidores de los otros servicios. Por ejemplo, las industrias que consumen mucha electricidad y producen pocas basura podrían verse afectadas si se cobra la limpieza pública como un porcentaje del consumo de energía.

Recuperación de costos de operación

A menudo los municipios han obtenido un apoyo o subsidio para cubrir las inversiones iniciales. En este caso, los costos anuales del servicio serían los de operación; en consecuencia, en las fórmulas [9-11] y [9-12] se sustituiría Cat por Cao.

Las tarifas medias de la población también pueden ser calculadas según su producción:
\[Tmf = \frac{30 \times ppci \times (Cut) \times (N)}{1.000} \]
[9-13]

donde:

- \(Tmf \) = Tarifa mensual familiar para el estrato social \(i \) (US$/mes-familia)
- \(ppci \) = Producción per cápita en el estrato socioeconómico \(i \) (kg/hab./día)
- \(Cut \) = Costo unitario total ($/t) (puede sustituirse por \(Cao \) si el servicio está subsidiado)
- \(N \) = Número promedio de personas por familia.
- 30, 1.000 = Parámetros dimensionales en (día/mes) y en (kg/t), respectivamente.

9.4.4 Cobranza

Como ya se mencionó, las tarifas por concepto del servicio de aseo urbano y, en especial, del relleno sanitario deben cobrarse con algún otro. El costo del servicio de cobranza, que se agrega a la tarifa de recolección de basura y a la del relleno sanitario, suele ser entre 10 y 20% de la tarifa total. Es conveniente cobrar de este modo porque si por falta de pago al usuario le suspenden la recolección de basura, no se preocuparía tanto como si le cortaran también la electricidad o el agua potable.

En las facturas en las que se cobren varios servicios públicos será obligatorio totalizar por separado cada uno de ellos.

9.4.5 Incumplimiento en el pago de la tarifa

Como ya se dijo, si el cobro por concepto de aseo está incluido en la factura de otro servicio público, el incumplimiento por parte del suscriptor o usuario podrá dar lugar a una sanción, como la suspensión de otros servicios; de lo contrario, será casi imposible utilizar métodos coercitivos tan solo para el pago del aseo. Se deben combinar medidas de sanción por el no pago con acciones de promoción para aquellos que cumplen puntualmente.
Guía para el diseño, construcción y operación de rellenos sanitarios manuales
Guía para el diseño, construcción y operación de rellenos sanitarios manuales
Aerobio. Relativo a la vida o a procesos que pueden ocurrir únicamente en presencia de oxígeno.

Aguas de escorrentía o escurrimiento. Aguas que no penetran en el suelo o que lo hacen lentamente y que corren sobre la superficie del terreno después de la lluvia.

Ambiente. Conjunto de elementos naturales o inducidos por el hombre que interactúan en un espacio y tiempo determinados.

Anaerobio. Relativo a la ausencia de oxígeno libre. Requerimiento de ausencia de aire o de oxígeno para la degradación de la materia orgánica.

Basura. Se entiende por basura todo residuo sólido o semisólido —con excepción de excretas de origen humano o animal— que carece de valor para el que la genera o para su inmediato poseedor. Están comprendidos en la misma definición los desechos, cenizas, elementos de barrido de calles, residuos industriales, de hospitales y de mercados, entre otros. Es sinónimo de *desechos* o *residuos sólidos*.

Berma. Espacio entre el pie del talud y el declive exterior del terraplén.

Biodegradable. Dicho de la materia orgánica, cualidad de ser metabolizada por medios biológicos.

Biogás. Mezcla de gases de bajo peso molecular (metano, bióxido de carbono, etc.), producto de la descomposición anaerobia de la materia orgánica.

Bióxido de carbono. Gas incoloro y más pesado que el aire. Altamente soluble en el agua, donde forma soluciones de ácidos débiles corrosivos. No inflamable por causa de su metabolismo anaerobio. Su fórmula es CO_2.

Celda. Conformación geométrica que se les da a los RSM y al material de cubierta debidamente compactado mediante equipo mecánico o por los trabajadores de un relleno sanitario.

Compactación. Acción de presionar cualquier material para reducir los vacíos existentes en él. El propósito de la compactación en el relleno sanitario es disminuir el volumen que ocuparán los RSM a fin de lograr una mayor estabilidad y vida útil.
Caseta. Construcción ubicada en la entrada principal del relleno sanitario que sirve como portería y como sitio para guardar las herramientas y las instalaciones sanitarias.

Contaminante. Todo elemento, materia, sustancia, compuesto, así como toda forma de energía térmica, radiación ionizante, vibración o ruido que, al incorporarse o actuar en cualquier elemento del medio físico, altera o modifica su estado y composición o afecta la flora, la fauna o la salud humana. Debe entenderse como medio físico el suelo, el aire y el agua.

Control. Vigilancia y aplicación de las medidas necesarias para el cumplimiento de las disposiciones establecidas.

Corte. Acción de rebajar por medios mecánicos o manuales un material; en este caso, el terreno donde se construirá el relleno sanitario.

Cota. Marca que indica la elevación de un banco de nivel del terreno.

Cubilación. Cuantificación del volumen de cualquier material o vacío tomando como unidad el metro cúbico.

Degradable. Dicho de determinadas sustancias o compuestos, cualidad de descomponerse gradualmente mediante medios físicos, químicos o biológicos.

Densidad. Masa o cantidad de materia de un determinado RSM contenida en una unidad de volumen.

Diseño. Trazo o delineación de una obra o figura. Se aplica el término al proyecto básico de la obra.

Disposición final. Depósito definitivo de los RSM en un sitio en condiciones adecuadas para evitar daños a los ecosistemas.

Dren. Estructura que sirve para el saneamiento y la eliminación del exceso de humedad en los suelos.

Estratificación socioeconómica. Clasificación de los inmuebles residenciales de un municipio que se hace de conformidad con los factores y procedimientos que determina la ley.
Factura de servicios públicos. Cuenta que el municipio o una persona prestadora de servicios públicos entrega o remite a los usuarios a cambio del consumo de dichos servicios.

Generación o producción. Cantidad de RSM originados por una fuente en un periodo determinado.

Impacto ambiental. Modificación del ambiente ocasionada por la acción del hombre o de la naturaleza.

Lixiviado o percolado. Líquido producido fundamentalmente por la precipitación pluvial que se infiltra a través del material de cobertura y atraviesa las capas de basura, transportando concentraciones apreciables de materia orgánica en descomposición y otros contaminantes. Otros factores que contribuyen a la generación de lixiviado son el contenido de humedad propio de los desechos, el agua de la descomposición y la infiltración de aguas subterráneas.

Lombricultura. Cultivo de lombrices del género *Eisenia fetida*, utilizado en la producción de alimento para animales y de humus, mejorador de suelos.

Material de cobertura. Capa superficial de tierra en cada celda que tiene como finalidad aislar los residuos del ambiente externo, controlar infiltraciones y la presencia de fauna nociva.

Mejoramiento. Incremento de la calidad.

Migración de biogás. Movimiento de las partículas de biogás a través y fuera del relleno sanitario.

Monitoreo. Muestreo y una serie de mediciones para determinar los cambios de niveles o concentraciones de contaminantes en un periodo y sitio determinados. En sentido restringido, es el examen periódico de los niveles de contaminación para cumplir con la normatividad o para evaluar la efectividad de un control.

Nivel freático. Profundidad a la que se encuentran las aguas freáticas. Este nivel baja en tiempo de estiaje y sube en etapa de lluvias.

Pendiente. Inclinación que tiene un terreno o cualquier elemento tomando como base la relación entre la longitud horizontal y la vertical.
Permeabilidad. Es la capacidad del suelo para conducir o transportar un fluido cuando se encuentra bajo un gradiente. Varía según la densidad del suelo, el grado de saturación y el tamaño de las partículas.

Pozo de monitoreo. Perforación profunda que se hace en un relleno sanitario para medir la cantidad de biogás y la calidad de los lixiviados que ahí se generan.

Precipitación pluvial. Agua atmosférica que cae al suelo en estado líquido o sólido (lluvia, nieve o granizo).

Prevención. Conjunto de disposiciones y medidas anticipadas para evitar el deterioro de un elemento.

Protección. Conjunto de políticas y medidas para prevenir y controlar el deterioro del ambiente así como para procurar su mejoramiento.

Reciclaje. Proceso mediante el cual ciertos materiales de la basura se separan, recogen, clasifican y almacenan a fin de reincorporarlos al ciclo productivo como materia prima.

Recuperación. Actividad relacionada con la obtención de materiales secundarios, bien sea por separación, desempaquetamiento, recolección o cualquier otra forma de selección de los RSM con el objeto de reciclarlos o volverlos a utilizar.

Residuo sólido comercial. Aquel generado en establecimientos comerciales o mercantiles (almacenes, hoteles, restaurantes, cafeterías y mercados).

Residuo sólido doméstico. El que por su naturaleza, composición, cantidad y volumen es generado por las actividades realizadas en viviendas o en cualquier otro establecimiento con características similares.

Residuo sólido industrial. Aquel generado en actividades propias de este sector, como resultado de los procesos de producción.

Residuo sólido institucional. Aquel generado en establecimientos educativos, gubernamentales, militares, penitenciarios, religiosos; también en terminales aéreos, terrestres, fluviales o marítimos y en oficinas.

Residuo sólido patogénico. El que por sus características y composición puede ser reservorio o vehículo de infección.
Reúso. Es el retorno de un bien o producto a la corriente económica para ser utilizado de la misma manera que antes, sin cambio alguno en su forma o naturaleza.

Saneamiento. Control de todos los factores del ambiente físico del hombre que ejercen o pueden ejercer un efecto pernicioso en su desarrollo físico, salud y supervivencia.

Separación de residuos sólidos. Actividad que facilita el manejo integral de los RSM ya que los divide en orgánicos e inorgánicos, peligrosos y no peligrosos.

Subsidio. Diferencia entre lo que se paga por un bien o servicio y el costo de este cuando tal costo es mayor que el pago que se recibe.

Suscriptor. Persona natural o jurídica con la cual se ha celebrado un contrato para recibir un servicio público.

Talud. Inclinación de un dique, terraplén o desmonte.

Terraplén. Macizo de tierra con que se rellena un hueco o que se levanta para hacer una defensa, un camino u otra obra semejante.

Terrazas. Ordenamiento de las pendientes muy inclinadas con el fin de crear parcelas horizontales.

Tratamiento. Proceso de transformación físico, químico o biológico de los RSM con el fin de obtener beneficios sanitarios y/o económicos y de reducir o eliminar sus efectos nocivos en el hombre y el ambiente.

Usuario. Persona natural o jurídica que se beneficia con la prestación de un servicio público, ya sea como propietario del inmueble en donde este se presta o como receptor directo de dicho servicio.

Vector. Seres vivos que intervienen en la transmisión de enfermedades al llevarlas de un enfermo o de un reservorio a una persona sana.

Vida útil. Periodo durante el cual el relleno sanitario estará apto para recibir basura de manera continua.
Guía para el diseño, construcción y operación de rellenos sanitarios manuales
REFERENCIAS
BIBLIOGRÁFICAS
Guía para el diseño, construcción y operación de rellenos sanitarios manuales
Referencias bibliográficas

Asociación Mexicana para el Control de Residuos Sólidos y Peligrosos-AMCRESPAC.

APÉNDICES
Guía para el diseño, construcción y operación de rellenos sanitarios manuales
Prueba de percolación

A.1 Exploraciones subterráneas

Será necesario hacer exploraciones subterráneas en una zona dada. En algunos casos, la observación de cortes en caminos, terrazas de ríos o excavaciones para edificios darán información útil.

Los registros de pozos o de perforaciones de pozos podrán utilizarse también para obtener información acerca del nivel freático y de las condiciones del subsuelo. En algunas zonas, los estratos del subsuelo varían ampliamente en distancias cortas y deberán realizarse sondeos en el sitio donde se colocará el sistema.

A.2 Procedimiento de la prueba

Mientras más poroso sea el suelo, mayor será el riesgo de infiltración del lixiviado y la posible contaminación del agua subterránea. Los terrenos formados por poros grandes no son efectivos para retener las partículas pequeñas y los formados por poros muy pequeños prácticamente son impermeables. A fin de determinar el área necesaria para los sistemas de tratamiento, se deberá hacer el siguiente ensayo (figura A.1).

1. Se excavará un hoyo de 30 x 30 centímetros de lado y de la profundidad a la cual va a hacerse la excavación para el sistema de zanjas de almacenamiento y drenaje del lixiviado (60 centímetros aproximadamente).

2. Se llenará con agua hasta saturarlo por espacio de una hora.

3. Se dejará drenar el agua completamente y de inmediato se volverá a llenar el hoyo con agua limpia hasta una altura de 15 centímetros (6 pulgadas). Se deberá anotar el tiempo que el nivel del agua tarda en bajar los primeros 2,5 centímetros (una pulgada), para lo cual deberá disponerse de una regla graduada o se podrá tomar un promedio del tiempo que demoró en bajar 15 centímetros.

Por ejemplo, si durante 30 minutos el nivel del agua desciende 2 centímetros, la tasa de percolación será de 30 min/2 cm = 15 min/cm = 37,5 min/2,5 cm.

Esta tasa de percolación se expresa frecuentemente en min/2,5 cm porque es equivalente a min/pulgada y muchas tablas y normas de diseño vienen expresadas en min/pulgada. Queda claro, entonces, que una tasa de percolación en min/2,5 cm es equivalente a una en min/pulgada (cuadro A.1).

Figura A.1
Ensayo de percolación

Las tasas de filtración encontradas serán utilizadas para conocer las posibilidades del terreno, a partir del ensayo de percolación, con miras a disponer los residuos sólidos y continuar con el diseño del relleno sanitario.
Cuadro A.1

Porosidades del terreno según las tasas de filtración

<table>
<thead>
<tr>
<th>Tasa de filtración (tiempo requerido para que el agua baje 2,5 cm en minutos)</th>
<th>Porosidad del terreno</th>
<th>Absorción del terreno</th>
<th>Tipo de suelo</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 ó menos</td>
<td>Absorción rápida</td>
<td></td>
<td>Arena gruesa o grava</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Absorción media</td>
<td></td>
<td>Arena fina franco-arenosa</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>Absorción lenta</td>
<td></td>
<td>Franco-arcilloso</td>
</tr>
<tr>
<td>15</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>30<sup>a</sup></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>45</td>
<td>Terreno semipermeable</td>
<td></td>
<td></td>
</tr>
<tr>
<td>50</td>
<td>Terreno impermeable</td>
<td></td>
<td></td>
</tr>
<tr>
<td>60<sup>b</sup> o más</td>
<td></td>
<td></td>
<td>Arcilla compacta</td>
</tr>
</tbody>
</table>

^a Si sobrepasa los 30 min/2,5 cm, el terreno es inapropiado para pozos de absorción.

^b Si la tasa de filtración es mayor de 60 min/2,5 cm, el terreno es inapropiado para tratamientos que utilicen el suelo como medio de absorción. Terreno apropiado para la disposición de residuos sólidos en un relleno sanitario.
Guía para el diseño, construcción y operación de rellenos sanitarios manuales
ANÁLISIS SIMPLIFICADO DEL SUELO

La observación y la evaluación de las características del suelo son muy importantes cuando este se va a utilizar como medio base para la disposición de los residuos sólidos. Es posible que las características del suelo hagan que el terreno no sea apto para la construcción de un relleno sanitario y haya que acudir a adecuaciones técnicas más costosas.

Los aspectos más importantes para evaluar las características del suelo se discutirán en las siguientes secciones.

B.1 Perforaciones

Las características de un suelo pueden determinarse a partir de perforaciones hechas manualmente o con algún equipo. Con estas perforaciones será posible determinar los diferentes estratos y tipos de suelos. Se recomienda realizar varias perforaciones para obtener una mejor representatividad del suelo. Estas perforaciones deben ser de una profundidad tal que permita observar los diferentes estratos.

Las perforaciones hay que hacerlas dentro y fuera del área que servirá de soporte al relleno; es decir, donde se excavarán las zanjas o se construirán los terraplenes de basura y tierra y se localizarán las zanjas de almacenamiento y evaporación de los lixiviados. Una vez extraída la muestra, se recomienda llenar con el mismo material nuevamente los pozos y darle una buena compactación al suelo.

B.2 Textura del suelo

La textura es quizá la propiedad física más importante del suelo porque está ligada al tamaño, a la distribución del tamaño y a la continuidad de los poros.

La textura del suelo se determina en el campo, pasando y aplastando entre los dedos pulgar e índice una muestra húmeda del terreno. La textura del suelo depende de su composición principal y puede ser:

Después de analizar varias muestras, se adquiere experiencia en la identificación de la textura del suelo sin necesidad de acudir al análisis de laboratorio, lo que permite un ahorro significativo de dinero y tiempo, especialmente en comunidades apartadas. Para hacer el ensayo de textura se debe humedecer una muestra del suelo de forma redonda con un diámetro de entre 1 y 3 centímetros. La humedad debe ser tal que la consistencia sea como de masilla.

Si la muestra se humedece mucho, el material será muy pegajoso y difícil de trabajar. Una vez que la muestra esté húmeda, se debe empezar a aplastar y a pasar entre los dedos de manera que se vaya formando una cinta (figura B.1).

En el cuadro B.1 y en la figura B.2 se describen las apariencias y sensaciones de diferentes texturas de suelo desde un punto de vista muy general.

Cuando se haga la perforación y se haya determinado la textura del suelo, se deben marcar las diferentes capas y medir sus espesores. Con esta información se puede hacer un esquema como el del cuadro B.2.

B.3 Estructura del suelo

La estructura del suelo tiene una influencia significativa en el control de la infiltración de los lixiviados en el relleno sanitario. Esta estructura se refiere principalmente a la agregación de partículas de suelo en grupos que son separados por hendiduras o superficies débiles. Los poros formados entre los agregados pueden modificar la influencia de la textura en el movimiento de agua en el suelo. En suelos con muchos poros es más rápido el movimiento del agua que en suelos sin estructura, compactos o masivos. Estos últimos tienen bajas tasas de percolación. La estructura del suelo se sintetiza en el cuadro B.3.
Cuadro B.1
Propiedad de la textura de suelos minerales

<table>
<thead>
<tr>
<th>Textura</th>
<th>Apariencia y sensación</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Suelo seco</td>
</tr>
<tr>
<td>Arenosa</td>
<td>Sueltan granos simples que se sienten ásperos. Cuando se aprieta el suelo entre los dedos, la masa se desintegra.</td>
</tr>
<tr>
<td>Franco-arenosa (suelos con predominio de arena)</td>
<td>Se rompe fácilmente. Al principio la textura aparece suave, pero a medida que se frota, empieza a dominar una sensación arenosa.</td>
</tr>
<tr>
<td>Franca (suelos con características de arena, limo y arcilla)</td>
<td>Los agregados se rompen bajo presión moderada. Los terrones pueden ser firmes. Cuando se pulveriza, el suelo franco presenta al tacto una sensación similar a la del terciopelo, que se torna arenosa a medida que se frota. Cuando el suelo franco se moldea, resiste una manipulación cuidadosa.</td>
</tr>
<tr>
<td>Franco-limosa (suelo con predominio de limo)</td>
<td>Los agregados son muy firmes, pero se pueden romper bajo presión moderada. Los terrones son de firmes a duros. Cuando el suelo es pulverizado, la sensación al tacto se parece a la de la harina.</td>
</tr>
<tr>
<td>Franco-arcillosa (suelo con predominio de arcilla)</td>
<td>Agregados muy firmes y duros, muy resistentes a dejarse romper con la mano. Cuando se pulveriza, el suelo presenta una sensación áspera al tacto, debido a los pequeños agregados que persisten.</td>
</tr>
<tr>
<td>Arcillosa</td>
<td>Agregados muy duros, moldes o bolas del material extremadamente duros y muy resistentes a dejarse romper con la mano. Cuando se pulveriza, muestra una textura aparentemente arenosa, debido a que pueden persistir pequeños agregados.</td>
</tr>
</tbody>
</table>
Figura B.1
Preparación del suelo para un ensayo de textura
Muestra seca

Arena
Consistencia suelta

Limos
Consistencia de moderadamente dura a dura

Arcillas
Consistencia de dura a muy dura

Muestra húmeda

No forma cinta

Casi no forma cinta

Forma cinta

Figura B.2
Determinación de la textura de un suelo con la mano.
Apariencia de varias texturas
Cuadro B.2
Representación gráfica de la textura, estructura y color del suelo a partir de observaciones en una perforación del suelo

<table>
<thead>
<tr>
<th>Profundidad (m)</th>
<th>Textura</th>
<th>Estructura</th>
<th>Color</th>
</tr>
</thead>
<tbody>
<tr>
<td>0,0</td>
<td>Franco-limosa</td>
<td>Granular</td>
<td>Pardo (café)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Laminar</td>
<td></td>
</tr>
<tr>
<td>1,0</td>
<td>Arcillo-limosa</td>
<td></td>
<td>De pardo a pardo amarillento</td>
</tr>
<tr>
<td>2,0</td>
<td>Arcillosa</td>
<td>Blocosa</td>
<td></td>
</tr>
<tr>
<td>3,0</td>
<td>Arcillo-arenosa</td>
<td>Laminar</td>
<td></td>
</tr>
<tr>
<td>4,0</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Cuadro B.3
Grados de la estructura del suelo

<table>
<thead>
<tr>
<th>Grado</th>
<th>Características</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sin estructura (no plástico si es arena, plástico si es masivo)</td>
<td>No se observa agregación.</td>
</tr>
<tr>
<td>Débil</td>
<td>Pobrecamente formado y difícil de ver. Cuando es manipulado, no retiene su forma.</td>
</tr>
<tr>
<td>Moderado</td>
<td>Los agregados son bien definidos. Moderadamente durable cuando se manipula.</td>
</tr>
<tr>
<td>Fuerte</td>
<td>Agregados bien definidos. Muy durable cuando se manipula.</td>
</tr>
</tbody>
</table>

B.4 Color del suelo

Aunque el color no es una propiedad importante en sí misma, es una indicación de otras propiedades más importantes. Por ejemplo, matices amarillentos y rojos indican que un suelo ha sufrido una severa meteorización, ya que esos colores se deben a los óxidos de hierro que se han formado. Un color oscuro, entre negro y pardo (café) oscuro, a menudo es una indicación de presencia de materia orgánica. Si durante una excavación se encuentra un cambio de color, esta con frecuencia es una indicación de
que se ha descubierto un estrato diferente del suelo con propiedades distintas. Usualmente, el color es la propiedad del suelo que más fácilmente emplea para su identificación quien no tiene experiencia en mecánica de suelos. Sin embargo, resulta un método práctico para distinguirlos. Los colores del suelo se describen visualmente con la ayuda de las cartas de colores.

B.5 Conductividad hidráulica

La conductividad hidráulica es el principal parámetro para determinar qué tan bien puede un suelo absorber y percolar el lixiviado. Esta capacidad se mide a partir de un ensayo de percolación que se describe en el apéndice A. Aunque los ensayos de percolación han sido muy criticados por su variabilidad y falta de precisión, en la práctica son la única manera sencilla y económica de calcular la conductividad hidráulica.

De una manera muy general, se presentan en el cuadro B.4 algunas cifras y rangos sobre la permeabilidad y la percolación de los suelos

Cuadro B.4

Características hidráulicas del suelo

<table>
<thead>
<tr>
<th>Textura del suelo</th>
<th>Permeabilidad cm/hora</th>
<th>Percolación min/2,5 cm</th>
<th>Observación</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arena</td>
<td>> 15</td>
<td>< 10<sup>a</sup></td>
<td>Muy permeables, inadecuados para construir un relleno sanitario</td>
</tr>
<tr>
<td>Franco-arenosa</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Franco-limosa-porosa</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Franco-arcillosa-limosa</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Arcillosa-compacta</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Franco-limosa</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Franco-arcillosa-limosa</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

^a Terrenos muy permeables o permeables no son adecuados para la disposición de residuos sólidos.
Guía para el diseño, construcción y operación de rellenos sanitarios manuales
APÉNDICE C

Nociones de dibujo y topografía

C.1 Dibujo a escala

Es una relación de medida que consiste en representar los objetos reales con sus proporciones exactas, en tamaños adecuados para facilitar el trabajo de los proyectistas y los constructores.

Podemos definir como dibujo a escala la representación exacta de un objeto en tamaño reducido.

Hay distintas escalas para establecer las medidas proporcionales que representan los objetos naturales:

<table>
<thead>
<tr>
<th>Escala</th>
<th>Cada metro en el campo es igual a</th>
<th>=</th>
<th>en el plano es</th>
</tr>
</thead>
<tbody>
<tr>
<td>1:20</td>
<td>1/20</td>
<td>0,05 m</td>
<td>5 cm</td>
</tr>
<tr>
<td>1:50</td>
<td>1/50</td>
<td>0,02 m</td>
<td>2 cm</td>
</tr>
<tr>
<td>1:100</td>
<td>1/100</td>
<td>0,01 m</td>
<td>1 cm</td>
</tr>
</tbody>
</table>

El primer número representa la unidad y el segundo las veces en que esta se ha dividido para generar dimensiones proporcionales más pequeñas.

Ejemplos:

C.2 Trazo y medición de alineamientos

Se colocan estacas en los extremos de la línea por medir y sobre ellas se colocan jalones o balizas.

El observador se coloca detrás de uno de los jalones o balizas, a 4 metros aproximadamente, de modo que vea ambos jalones confundidos en uno solo.
Luego, dos personas (cadeneros) llevarán los extremos de la cinta; el de atrás colocará el principio de ella en la base del primer jalón y el de adelante estirará la cinta a lo largo del alineamiento fijado por los dos jalones, siguiendo las indicaciones del observador colocado detrás del primer jalón. El de adelante llevará varios ganchos de alambre que irá colocando al final de cada cinta, de manera que, al hacer la siguiente medición, el de atrás coloque allí el extremo que lleva (figura C.1).

![Figura C.1](image)

Alineamiento

Esta operación se repetirá las veces que sea necesario hasta llegar al otro extremo.

C.3 **Trazo de una perpendicular desde un punto fuera del alineamiento**

Se coloca una persona sobre el alineamiento, mirando hacia el punto donde se desea trazar la perpendicular con los brazos extendidos, procurando que estos apunten a cada extremo del alineamiento. En seguida cierra los brazos y los extiende hacia el frente. El punto mencionado debe quedar en la dirección que en esta posición apunten los brazos.
Si se cuenta con una escuadra de agrimensor (figura C.2), simplemente se observará por las ranuras.

Figura C.2
Trazo de una perpendicular
D.1 Ejemplo 1. Cálculo de la generación diaria de basura

Encuentre la cantidad diaria de residuos sólidos que generan los 40.000 habitantes de una ciudad cuya generación por habitante se estimó en 0,5 kg/hab/día.

\[
DS_d = Pob \times ppc \\
DS_d = 40.000 \times 0,5 = 20.000 \text{ kg/día} = 20 \text{ t/día}
\]

Si el relleno operará seis días a la semana, ¿cuánta basura será necesario procesar cada día hábil?

\[
DS_d \text{ hábil} = \frac{7 \times 20}{6} = 23,3 \text{ t/día}
\]

D.2 Ejemplo 2. Cálculo de volumen necesario del relleno

La administración municipal de una ciudad tiene entre sus proyectos construir un relleno sanitario como solución al destino final de su basura. Se necesita conocer la cantidad de basura producida, el volumen del relleno y el área requerida para iniciar la selección del sitio. Para tal efecto, se dispone de la siguiente información:

<table>
<thead>
<tr>
<th>Descripción</th>
<th>Valores</th>
</tr>
</thead>
<tbody>
<tr>
<td>Población en el área urbana</td>
<td>30.000 habitantes</td>
</tr>
<tr>
<td>Tasa de crecimiento de la población</td>
<td>2,6% anual</td>
</tr>
<tr>
<td>Volumen de desechos sólidos recolectados en el vehículo recolector</td>
<td>252 m³/semana</td>
</tr>
<tr>
<td>Cobertura del servicio de recolección de residuos sólidos</td>
<td>90%</td>
</tr>
<tr>
<td>Densidad de los residuos sólidos</td>
<td></td>
</tr>
<tr>
<td>En el vehículo recolector (sin compactación)</td>
<td>300 kg/m³</td>
</tr>
<tr>
<td>Recién compactados en el relleno sanitario manual</td>
<td>450 kg/m³</td>
</tr>
<tr>
<td>Estabilizados en el relleno sanitario manual</td>
<td>600 kg/m³</td>
</tr>
</tbody>
</table>
Guía para el diseño, construcción y operación de rellenos sanitarios manuales

Solución

Para mayor facilidad en el manejo de la información, se hará uso del cuadro D.1, en el cual se resumirán todos los resultados. Los números de las columnas a las que se hace referencia más adelante son los de ese cuadro.

D.2.1 Proyección de la población

Se adoptará un crecimiento geométrico para el cálculo de la proyección de la población con una tasa de 2,6% anual (ecuación 5-1), para estimar las necesidades de los próximos 10 años, columna 1.

<table>
<thead>
<tr>
<th>Año</th>
<th>P</th>
<th>r</th>
<th>n</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>30,000</td>
<td>0,026</td>
<td>1</td>
<td>30,800</td>
</tr>
<tr>
<td>2</td>
<td>30,000</td>
<td>0,026</td>
<td>2</td>
<td>31,580</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>10</td>
<td>30,000</td>
<td>0,026</td>
<td>9</td>
<td>37,796</td>
</tr>
</tbody>
</table>

D.2.2 Producción per cápita

La producción per cápita se estima aplicando la ecuación 5-2.

\[ppc = \frac{DSr/sem}{Pob \times 7 \times Cob} = \frac{252m^3/sem \times 300 kg/m^3}{30,000 hab \times 7 días/sem \times 0,9} \]

\[ppc_1 = 0,4 \text{ kg/hab/día (primer año)} \]

Se estima que la producción per cápita aumentará en 1% anual. Entonces, para el segundo y el tercer año será:

\[ppc_2 = ppc_1 + (1\%) = 0,4 \times (1,01) \]
\[ppc_3 = ppc_2 + (1\%) = 0,404 \times (1,01) \]
\[ppc_3 = 0,408 \]

y así sucesivamente se calcula la ppc para los demás años (columna 2).
D.2.3 Cantidad de desechos sólidos

La producción diaria se calcula a partir de la ecuación 5-4 (columna 3).

\[
DS_d = Pob \times ppc = 30.000 \times 0,4 \quad \text{kg}\text{hab/día}
\]

\[
DS_d = 12.000 \text{ kg/día}
\]

La producción anual se calcula multiplicando la producción diaria de desechos sólidos por los 365 días del año (columna 4).

\[
DS_{anual} = \frac{12.000 \text{ kg/día} \times 365 \text{ días/año} \times 1 \text{ ton}}{1.000 \text{ kg}} = 4.380 \text{ t/año}
\]

D.2.4 Volumen de desechos sólidos

- **Volumen de residuos anual compactado** (ecuación 5-6, columna 8). Con una densidad de 450 kg/m3 debido a la operación manual.

\[
V_{\text{anual compactado}} = DS_{anual} \times \frac{365}{\text{Drsm}} = 12.000 \text{ kg/día} \times 450 \text{ kg/m}^3 \times 365 \text{ días/año} = 9.733 \text{ m}^3/\text{año}
\]

- **Volumen de residuos anual estabilizado** (ecuación 5-6, columna 10). Con una densidad estimada de 600 kg/m3 para el cálculo del volumen del relleno sanitario.

\[
V_{\text{anual estabilizado}} = DS_{anual} \times \frac{365}{\text{Drsm}} = 12.000 \text{ kg/día} \times 600 \text{ kg/m}^3 \times 365 \text{ días/año} = 7.300 \text{ m}^3/\text{año}
\]

- **Volumen del relleno sanitario estabilizado.** Está conformado por los residuos sólidos estabilizados y el material de cobertura.

- **Material de cobertura.** Es la tierra necesaria para cubrir los residuos recién compactados y se calcula como 20% del volumen de basura recién compactado (ecuación 5-7, columna 9), así:

\[
mc = V_{\text{anual de residuos compactados}} \times 0,2 = 7.300 \text{ m}^3/\text{año} \times 0,2 = 1.947 \text{ m}^3/\text{tierra/año}
\]
Volumen del relleno sanitario (ecuación 5-8)

\[V_{RS} = V_{anual estabilizado} \times m. c. = 7.300 \text{ m}^3/\text{año} + 1.947 = 9.247 \text{ m}^3/\text{año} \]

Es de notar que la columna 10 presenta el volumen del relleno acumulado anualmente, lo que permite identificar la vida útil del relleno al compararla con la capacidad volumétrica del sitio.

D.2.5 Cálculo del área requerida

Cálculo del área por rellenar. A partir de la ecuación 5-9, si se asume una profundidad promedio de seis metros, las necesidades de área serán:

El primer año

\[A_{RS} = \frac{V_{RS}}{h_{RS}} = \frac{9.247 \text{ m}^3/\text{año}}{6 \text{ m}} = 1.541 \text{ m}^2 (0,15 \text{ ha}) \]

El tercer año

\[A_{RS} = \frac{28.763 \text{ m}^3}{6 \text{ m}} = 4.794 \text{ m}^2 (0,48 \text{ ha}) \]

En la columna 13 se podrá observar el área necesaria para 2, 3 ó más años, si se trabaja a partir de los datos acumulados en la columna 12.

Cálculo del área total. Teniendo en cuenta un factor de aumento \(F \) para las áreas adicionales (columna 14). En este caso, se asume 30%.

Es decir:

Para el primer año

\[A_t = F \times A_{RS} = 1.30 \times 1.541 \text{ m}^2 = 2.003 \text{ m}^2 (0,2 \text{ ha}^3) \]

Para tres años de vida útil:

\[A_t = 13 \times 4.794 \text{ m}^2 = 6.232 \text{ m}^2 (0,62 \text{ ha}) \]

\(1 \text{ ha} = 10.000 \text{ m}^2. \)
Cuadro D.1
Cálculo para estimar el volumen del relleno sanitario y el área requerida del terreno

<table>
<thead>
<tr>
<th>Año</th>
<th>Población (hab)</th>
<th>PPC kg/hab-día</th>
<th>Diaria kg/día</th>
<th>Anual ton</th>
<th>Compactados</th>
<th>Estabilizados</th>
<th>Relleno Sanitario (DS+m.c.)</th>
<th>Relleno Sanitario m²</th>
<th>ÁREA REQUERIDA m²</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>1</td>
<td>30.000</td>
<td>0.4</td>
<td>12.000</td>
<td>4.380</td>
<td>4.380</td>
<td>27</td>
<td>5</td>
<td>9.733</td>
<td>1.947</td>
</tr>
<tr>
<td>2</td>
<td>30.780</td>
<td>0.404</td>
<td>12.435</td>
<td>4.539</td>
<td>8.919</td>
<td>28</td>
<td>6</td>
<td>10.086</td>
<td>2.017</td>
</tr>
<tr>
<td>3</td>
<td>31.580</td>
<td>0.408</td>
<td>12.886</td>
<td>4.703</td>
<td>13.622</td>
<td>29</td>
<td>6</td>
<td>10.452</td>
<td>2.090</td>
</tr>
<tr>
<td>4</td>
<td>32.401</td>
<td>0.412</td>
<td>13.353</td>
<td>4.874</td>
<td>18.496</td>
<td>30</td>
<td>6</td>
<td>10.831</td>
<td>2.166</td>
</tr>
<tr>
<td>5</td>
<td>33.244</td>
<td>0.416</td>
<td>13.837</td>
<td>5.051</td>
<td>23.547</td>
<td>31</td>
<td>6</td>
<td>11.224</td>
<td>2.245</td>
</tr>
<tr>
<td>6</td>
<td>34.108</td>
<td>0.420</td>
<td>14.339</td>
<td>5.234</td>
<td>28.781</td>
<td>32</td>
<td>6</td>
<td>11.631</td>
<td>2.326</td>
</tr>
<tr>
<td>7</td>
<td>34.995</td>
<td>0.425</td>
<td>14.859</td>
<td>5.424</td>
<td>34.204</td>
<td>33</td>
<td>7</td>
<td>12.052</td>
<td>2.410</td>
</tr>
<tr>
<td>8</td>
<td>35.905</td>
<td>0.429</td>
<td>15.398</td>
<td>5.620</td>
<td>39.824</td>
<td>34</td>
<td>7</td>
<td>12.489</td>
<td>2.498</td>
</tr>
<tr>
<td>9</td>
<td>36.838</td>
<td>0.433</td>
<td>15.956</td>
<td>5.824</td>
<td>45.649</td>
<td>35</td>
<td>7</td>
<td>12.942</td>
<td>2.588</td>
</tr>
<tr>
<td>10</td>
<td>37.796</td>
<td>0.437</td>
<td>16.535</td>
<td>6.035</td>
<td>51.684</td>
<td>37</td>
<td>7</td>
<td>13.412</td>
<td>2.682</td>
</tr>
</tbody>
</table>

(6) La producción de DS de una semana ingresa al RS en los días “x” de recolección (7 días/x días hábiles)

(7 y 9) Material de cobertura

(11) Vol. relleno sanitario = desechos sólidos estabilizados + tierra (20 a 25%) promedio general

(13) $A_{RS} = \frac{V_{RS}}{h}$ (A_{RS} = Área a rellenar)

(14) $A_T = F \times A_{RS}$ (A_T = Factor para área adicional)

<table>
<thead>
<tr>
<th>Densidad de la basura:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Suelta</td>
</tr>
<tr>
<td>Compactada</td>
</tr>
<tr>
<td>Estabilizada</td>
</tr>
</tbody>
</table>

- Suelta: 200 - 300 kg/m³
- Compactada: 400 - 500 kg/m³
- Estabilizada: 500 - 600 kg/m³

Área/hab........ (m²/hab) actual
D.3 Ejemplo 3. Cálculo del volumen de una zanja

En un municipio se dispone de un terreno plano para construir un relleno sanitario manual por el método de zanjas. Para abrir las zanjas se pagará el alquiler de una retroexcavadora que tiene un rendimiento de 14 m3/hora de corte.

¿Cuál es el volumen de una zanja y sus dimensiones para 60 días de duración?
¿Por cuántos días debe alquilarse la maquinaria?

Información básica

<table>
<thead>
<tr>
<th>Descripción</th>
<th>Valor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Población por servir</td>
<td>30,000 habitantes</td>
</tr>
<tr>
<td>ppc</td>
<td>0.4 kg/hab/día</td>
</tr>
<tr>
<td>Cobertura de servicio de recolección de residuos</td>
<td>90% de la población</td>
</tr>
</tbody>
</table>

Solución

Cantidad de desechos sólidos producidos

$$DS_p = \text{Pob} \times \text{ppc} = 30.000 \text{ hab} \times \frac{0.4 \text{ kg}}{\text{hab/día}} = 12.000 \frac{\text{kg}}{\text{día}}$$

Cantidad de DS recolectados

$$DS_r = DS_p \times \text{Cob} = 12.000 \frac{\text{kg}}{\text{día}} \times 0.90 = 10.800 \frac{\text{kg}}{\text{día}}$$

Volumen de la zanja

Si se estima en 20% el material de cobertura, una vida útil de 60 días y una densidad de 500 kg/m3, entonces:

$$V_z = \frac{t \times DS_r \times mc}{DS_{rsm}} = \frac{60 \text{ días} \times 10.800 \text{ kg/día} \times 1.2}{500 \text{ kg/día}} = 1.555 \text{ m}^3$$

Es decir que para depositar los desechos sólidos de un día se requerirán excavar 1.555/60 = 26 m3

Dimensiones de la zanja

$$h_z = \text{profundidad} = 3 \text{ m}$$
$$a = \text{ancho} = 6 \text{ m}$$
$$l = \text{largo} = ?$$
Por lo tanto:

\[h_Z = 3 \text{ m} \]
\[a = 6 \text{ m} \]
\[l = 86 \text{ m} \]

\[T_i \text{empo de maquinaria} \]

\[t_{exc} = \frac{V_z}{R \times J} = \frac{1,555 \text{ m}^3}{14 \text{ m}^3/\text{hora} \times 8 \text{ horas/día}} = 13,9 = 14 \text{ días} \]

Lo anterior significa que para tener la zanja completamente lista, se debe disponer de catorce días para su excavación. Sin embargo, conviene anotar que por lo menos cinco días antes de que se llene una zanja se debe llevar el equipo para abrir una nueva y mantener una buena programación de la máquina, para disponer la basura sin contratiempos.

D.4 Ejemplo 4. Cálculo de la vida útil de un relleno en zanja

Supóngase un terreno de 2,3 hectáreas y relativamente plano. Se desea saber cuánto puede durar el relleno sanitario si se excavan zanjas como las calculadas anteriormente, de 86 metros de largo.

Figura D.1
Configuración y distribución de zanjas en el terreno
Solución

Se reservan para obras complementarias 0,3 hectáreas y quedan 2 para rellena- nar. Cada zanja se excava con una separación de un metro. Entonces:

Como cada zanja ocupa 6 metros más un metro de separación entre ellas —es decir, 7 metros en total—, el número de zanjas en una hectárea será de:

Número de zanjas = 100/7 = 14,2 ó 14

Si cada zanja tiene una vida útil de dos meses, las catorce zanjas durarán 2,4 años. El terreno deberá medir en total 2,5 hectáreas para tener la vida útil de cinco años requerida.

El método de zanja se puede combinar con el método de área para aprovechar mejor el terreno; es decir, se eleva el relleno sanitario construyendo terraplenes de basura y tierra unos metros por encima de la superficie original y se utiliza la tierra sobrante de la excavación (80% en el caso del ejemplo).

Volumen del relleno sanitario de área

D.5 Ejemplo 5. Cálculo del volumen por la regla de Simpson

Supóngase un proyecto de relleno sanitario manual en un tramo de carretera abandonada cuyos cortes son similares a los mostrados en la figura siguiente y supóngase también que se han tomado niveles en ejes transversales a intervalos de 100 metros con una altura promedio de 8 metros.

Figura D.2
Configuración del terreno en el tramo de una carretera abandonada
El relleno tendrá un ancho a de 6 metros en el fondo, una pendiente variable en cada tramo y los siguientes datos:

<table>
<thead>
<tr>
<th>Abscisa (m)</th>
<th>0</th>
<th>100</th>
<th>200</th>
<th>300</th>
<th>400</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sección transversal (m²)</td>
<td>A₁</td>
<td>A₂</td>
<td>A₃</td>
<td>A₄</td>
<td>A₅</td>
</tr>
<tr>
<td>Pendiente (n)</td>
<td>1:2</td>
<td>1:1</td>
<td>1:3</td>
<td>1:1</td>
<td>1:2</td>
</tr>
<tr>
<td>Altura en el eje c promedio</td>
<td>8 m</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

La base mayor del trapezio será:

Ancho de la superficie del relleno en cada abscisa (a = 6) = \[(6 + nc)\] metros

Por lo tanto, el área de la sección en cada abscisa (trapezio) será:

\[
\text{Área} = \frac{[6 + 2(nc)] + 6}{2} \times c = (6 + nc) \times c
\]

Área en

0 = \[(6 + 2 \times 8) \times 8\] = 176 m² A₁
100 = \[(6 + 1 \times 8) \times 8\] = 112 m² A₂
200 = \[(6 + 3 \times 8) \times 8\] = 240 m² A₃
300 = \[(6 + 1 \times 8) \times 8\] = 112 m² A₄
400 = \[(6 + 2 \times 8) \times 8\] = 176 m² A₅

Aplicando la regla de Simpson (ecuación 5-17):

\[
\text{Volumen} = \frac{100}{3} \times [176 + 176 + 2(240) + 4(112 + 112)] = 57.600 \text{ m}³
\]

D.6 Ejemplo 6. Cálculo del volumen por la regla del prismoide

En la figura se muestra un proyecto de relleno sanitario manual en un zanjón del que se conocen los siguientes datos:

i. longitud de la zanja 100 m
ii. ancho de la base inferior 6 m
iii. profundidad inicial 8 m
iv. profundidad final 5 m
v. taludes 1:1
Calcular el volumen del relleno por medio de la fórmula del prismoide:

![Figura D.3](image.png)

Relleno sanitario en un zanjón

Solución

i. **Sección A₁:**

<table>
<thead>
<tr>
<th>Metric</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ancho de la base</td>
<td>6 m</td>
</tr>
<tr>
<td>Ancho total</td>
<td>$(6 + 2c)$ m</td>
</tr>
<tr>
<td>Profundidad en el eje c</td>
<td>8 m</td>
</tr>
</tbody>
</table>

Por lo tanto, ancho total = $(6 + 16) m = 22 m$

ii. **Sección A₂:**

<table>
<thead>
<tr>
<th>Metric</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ancho de la base</td>
<td>6 m</td>
</tr>
<tr>
<td>Ancho total</td>
<td>$(6 + 2c)$</td>
</tr>
<tr>
<td>Profundidad del eje c</td>
<td>5 m</td>
</tr>
</tbody>
</table>

Por lo tanto, ancho total = $(6 + 10) m = 16 m$

iii. **Sección media M:**

<table>
<thead>
<tr>
<th>Metric</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ancho de la base</td>
<td>6 m</td>
</tr>
<tr>
<td>Ancho total</td>
<td>$(6 + 2c)$ m</td>
</tr>
<tr>
<td>Profundidad del eje c</td>
<td>promedio de profundidad en A₁ y A₂</td>
</tr>
</tbody>
</table>

= $\frac{1}{2} (8 + 5) m$

= 6,5 m
Por lo tanto, ancho total = 6 + 13 m = 19 m (promedio de los anchos en A₁ y A₂)

iv. Área de las secciones y trapecios

\[A₁ = \frac{1}{2} (6 + 22) \times 8 = 112 \text{ m}² \]
\[A₂ = \frac{1}{2} (6 + 16) \times 5 = 55 \text{ m}² \]
\[M = \frac{1}{2} (6 + 19) \times 6,5 = 81,25 \text{ m}² \]

v. Volumen = \(\frac{100}{6} [112 + 55 + 4(81,25)] = 8.200 \text{ m}³ \)

D.7 Ejemplo 7. Volumen a partir de las áreas extremas

Partiendo de los mismos datos del ejemplo anterior, tenemos:

\[V = \frac{A₁ + A₂ \times d}{2} \text{ (m}³\text{)} \]

A₁ = 112 m²
A₂ = 55 m²
d = 100 m

Entonces, el volumen será:

\[\text{Volumen} = \frac{(112 + 55)}{2} \times 100 \text{ (m}³\text{)} = 8.350 \text{ m}³ \]

Se observa que el resultado es aproximado.

D.8 Ejemplo 8. Volumen a partir de una retícula

En la figura se muestra una pequeña parte de una retícula. El área debe rellenarse hasta la cota 100,0 metros para obtener la superficie final. Los taludes se considerarán verticales.

El sólido con base en cada cuadro de la red es un prisma vertical truncado. Esto es, un prisma cuyas bases no son paralelas.
Guía para el diseño, construcción y operación de rellenos sanitarios manuales

Volumen de cada prisma = altura promedio × área de la base

La altura promedio de cada prisma truncado por debajo de la cota 100,0 m es:

prisma 1 = \(\frac{9 + 7 + 8 + 8}{4}\) = 8 m
prisma 2 = \(\frac{7 + 6 + 8 + 7}{4}\) = 7 m
prisma 3 = \(\frac{8 + 8 + 7 + 9}{4}\) = 8 m
prisma 4 = \(\frac{8 + 7 + 9 + 8}{4}\) = 8 m

Área de la base de cada prisma truncado = 10 × 10 = 100 m²

Por lo tanto:

Volumen de 1 = 100 × 8 = 800 m³
2 = 100 × 7 = 700 m³
3 = 100 × 8 = 800 m³
4 = 100 × 8 = 800 m³

Volumen total disponible = 3.100 m³

También puede hallarse el volumen de la siguiente manera:

Volumen = altura promedio del relleno × área total

Figura D.4
Terraplén con la forma de un prisma vertical truncado
La altura promedio del relleno es el promedio de las alturas promedio de los prismas y no la media de las alturas en los puntos de nivel.

Altura promedio de relleno = \(\frac{8 + 7 + 8 + 8}{4} \) = 7,75 m
Área total = 20 \times 20 = 400 m²

donde:

Volumen total = 7,75 \times 400 = 3.100 \text{ m}³

<table>
<thead>
<tr>
<th>Punto de la red</th>
<th>Altura hasta nivel del proyecto</th>
<th>Número de veces que se usa</th>
<th>Producto</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>9</td>
<td>1</td>
<td>9</td>
</tr>
<tr>
<td>B</td>
<td>7</td>
<td>2</td>
<td>14</td>
</tr>
<tr>
<td>C</td>
<td>6</td>
<td>1</td>
<td>6</td>
</tr>
<tr>
<td>D</td>
<td>8</td>
<td>2</td>
<td>16</td>
</tr>
<tr>
<td>E</td>
<td>8</td>
<td>4</td>
<td>32</td>
</tr>
<tr>
<td>F</td>
<td>7</td>
<td>2</td>
<td>14</td>
</tr>
<tr>
<td>G</td>
<td>7</td>
<td>1</td>
<td>7</td>
</tr>
<tr>
<td>H</td>
<td>9</td>
<td>2</td>
<td>18</td>
</tr>
<tr>
<td>I</td>
<td>8</td>
<td>1</td>
<td>8</td>
</tr>
<tr>
<td>Suma</td>
<td>16</td>
<td></td>
<td>124</td>
</tr>
</tbody>
</table>

Al observar en detalle este proceso, se ve que el nivel A se usó solo una vez para hallar la altura promedio del relleno, el nivel B dos veces y el E cuatro veces en total. En consecuencia, la altura promedio y el volumen pueden hallarse en forma más sencilla tabulando las operaciones como en la tabla anterior.

Las alturas en los puntos de nivel se tabulan en la columna 2 y el número de veces que se usan son tabulados en la 3; la columna 4 lista los productos de los números de las columnas 2 y 3; la altura media se halla dividiendo la suma de la columna 4 por la de la columna 3.

Altura media del relleno = \frac{124}{16} \text{ m} \\
= 7,75 \text{ m como antes}
D.9 Ejemplo 9. Volumen a partir de las curvas de nivel

El procedimiento consiste en determinar la capacidad existente del sitio, entre los planos horizontales de los terraplenes de basura que se pueden construir en el terreno, para lo cual es necesario calcular las áreas horizontales, obtener el promedio de la suma de las áreas y multiplicarlas por la diferencia de altura entre los planos horizontales.

Por lo tanto, el volumen del relleno está dado por la ecuación:

\[V = \frac{1}{2} (A_0 + A_1) h + \frac{1}{2} (A_1 + A_2) h + \ldots + \frac{1}{2} (A_{n-1} + A_n) h \]

\[V = \left\{ \frac{(A_0 + A_n)}{2} + A_1 + A_2 + \ldots + A_{n-1} \right\} h \]

Procedimiento:

1. Se prepara un plano del sitio a escala 1:250, 1:500 ó 1:1.000, de acuerdo con el tamaño del terreno, con las curvas de nivel de cada metro.

2. Se dibuja la topografía del terreno, después de la preparación inicial y la topografía final del relleno sanitario, asegurando la pendiente de la superficie (2 a 3%) para facilitar el drenaje del agua de lluvia.

3. Se traza un eje horizontal en el punto que sea conveniente y luego se corta el terreno con los planos horizontales \(A_0, A_1, A_2, A_3, \ldots \) y \(A_n \), con una altura \(h \) entre ellos. Se recomiendan 3, 5, 10 ó 15 m de distancia entre los planos horizontales, de acuerdo con el tamaño del terreno.

4. Se calculan las áreas \(A_0, A_1, A_2, A_3, \ldots \) y \(A_n \), usando los mapas de topografía inicial, final y los de avance de las etapas del relleno.

5. Se calcula la capacidad volumétrica del sitio, usando las ecuaciones 5-19, 5-20, 5-21 ó 5-22, tomando las áreas calculadas en el punto 4.
Figura D.5
Planta y perfiles del terreno y relleno para el cálculo del volumen a partir de las curvas de nivel o planos horizontales
D.10 Ejemplo 10. Cálculo y diseño de la celda diaria

Para la misma población de 30,000 habitantes, con una producción de 12 t/día y una cobertura del 90% del servicio de recolección de residuos, calcule y diseñe la celda diaria en el relleno sanitario manual, si este opera seis días a la semana.

Solución

A. La cantidad de basura producida y que va al relleno sanitario se calcula a partir de la ecuación 5-31.

\[D_{Sr} = D_P \times \frac{7}{6} = 12,000 \text{ kg/día} \times \frac{7}{6} = 14,000 \text{ kg/día laboral} \]

Sin embargo, como se sabe, sólo 90% de los residuos sólidos llegarán al relleno realmente. Entonces:

\[D_{Sr} = 14,000 \times 0,90 = 12,600 \text{ kg/día laboral} \]

B. El volumen de la celda diaria, con la ecuación 5-32, teniendo en cuenta que el material de cobertura es 20% del volumen de la basura recién compactada, cuya densidad en este caso se estima en 450 kg/m³.

\[V_c = \frac{D_{Sr} \times \text{m.c.}}{D_{sm}} = \frac{12,600 \text{ kg/día}}{450 \text{ kg/m³}} \times 1,20 = 33,6 \text{ m}^3/\text{día laboral} \]

C. Las dimensiones de la celda se hallan en el ejemplo fijando la altura de la celda a un metro. Entonces, el área será igual a:

\[A_c = \frac{V_c}{h_c} = \frac{33,6 \text{ m}^3}{1 \text{ m}} = 33,6 \text{ m}^2/\text{día laboral} \]

El largo o avance de la celda estará sujeto a las variaciones normales del ingreso de la basura, mientras que el ancho, en este caso, se podrá mantener en 3 metros, ancho que es el adecuado para que el vehículo pueda descargar:

\[l = \frac{A_c}{a} = \frac{33,6 \text{ m}^2}{3 \text{ m}} = 11,2 \text{ m/día} \]

Por lo tanto:

\[l = 11,2 \text{ m}, a = 3 \text{ m}, h_c = 1,0 \text{ m} \]
También se puede escoger una sección cuadrada:

\[l = 5.8 \text{ m}, a = 5.8 \text{ m}, h_c = 1.0 \text{ m} \]

D.11 Ejemplo 11. Cálculo de la mano de obra

Para los 12,600 kg/día, en cada uno de los 6 días en que operará el relleno sanitario, con una jornada de 8 horas y considerando 6 horas efectivas de trabajo por día, ¿cuánto personal se requerirá si se suponen los rendimientos propuestos en el capítulo 5, numeral 5.12?

Solución

Celda diaria = volumen de residuos sólidos + material de cobertura (20%)

\[\text{Volumen de DS} = \frac{12,600 \text{ kg/día}}{450 \text{ kg/m}^3} = 28 \text{ m}^3/\text{día} \]

\[\text{Volumen de tierra} = \frac{28 \text{ m}^3}{\text{día}} \times 0.20 = 5.6 \text{ m}^3/\text{día} \]

\[\text{Volumen de la celda diaria} = (28 + 5.6) \text{ m}^3/\text{día} = 33.6 \text{ m}^3/\text{día} (hc = 1.0 \text{ m}) \]

Ahora, de acuerdo con las distintas operaciones y rendimientos, se tiene:

<table>
<thead>
<tr>
<th>Operación</th>
<th>Rendimientos</th>
<th>Hombre/día</th>
</tr>
</thead>
<tbody>
<tr>
<td>Movimiento de desechos</td>
<td>(\frac{12.6 \text{ t/día}}{0.95 \text{ t/hr – hom}} \times \frac{1}{6\text{hr}})</td>
<td>2.21</td>
</tr>
<tr>
<td>Compactación de desechos</td>
<td>(\frac{33.6 \text{ m}^3}{20 \text{ m}^3/\text{hr – hom}} \times \frac{1}{6\text{hr}})</td>
<td>0.28</td>
</tr>
<tr>
<td>Movimiento de tierra</td>
<td>(\frac{5.6 \text{ m}^3}{0.37 \text{ m}^3/\text{hr – hm}} \times \frac{1}{6\text{hr}})</td>
<td>2.52</td>
</tr>
<tr>
<td>Compactación de la celda</td>
<td>(\frac{33.6\text{m}^2}{(20) \text{ m}^3/\text{hr – hom}} \times \frac{1}{6\text{hr}})</td>
<td>0.28</td>
</tr>
<tr>
<td>Total hombres</td>
<td></td>
<td>5.29</td>
</tr>
<tr>
<td>Relleno sanitario</td>
<td>12.6 t/día 5 hombres</td>
<td>2.5 t/hombre/día</td>
</tr>
</tbody>
</table>
Lo anterior significa que este relleno sanitario podrá ser operado con un total de cinco trabajadores (que equivale a un rendimiento de 2,5 t/hombre/día). Como se anotó, el número de trabajadores depende de qué tan cerca estén del frente de trabajo el sitio de descarga de la basura, del material de cobertura, de las condiciones del clima (época de lluvias) y, por supuesto, de la cantidad de desechos recibidos en el relleno.

Vale la pena recordar que la supervisión juega un papel de primera línea, tanto en la buena marcha del relleno sanitario como en el rendimiento de los trabajadores.

D.12 Ejemplo 12. Cálculo de costos

Se desea conocer cuáles serán los costos de inversión, operación y mantenimiento de un relleno sanitario manual y establecer, además, el costo de la tarifa para los usuarios. El relleno sanitario recibirá 12 toneladas de basura diaria, de lunes a sábado, en un terreno para el que se estima una vida útil de 9 años. Se cuenta con la siguiente información para el análisis:

D.12.1 Costo de inversión (US$)

<table>
<thead>
<tr>
<th>Descripción</th>
<th>Costo (US$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Estudios y diseños (contrato de entidad asesora)</td>
<td>4.000</td>
</tr>
<tr>
<td>Adquisición del terreno</td>
<td>8.000</td>
</tr>
<tr>
<td>Preparación del terreno y obras complementarias</td>
<td>7.000</td>
</tr>
<tr>
<td>Total de costos de inversión</td>
<td>19.000</td>
</tr>
</tbody>
</table>

D.12.2 Gastos de operación y mantenimiento

Mano de obra

Se ha determinado que se requieren 4 trabajadores, cuyo salario es de US$ 90,00/mes cada uno, con un factor de prestaciones de 1,6, y el 20% del salario de un supervisor con US$ 150/mes.

Otros gastos operativos

Materiales (piedra para drenes, alambre, herramientas) US$ 300/año

Alquiler de tractor de orugas (excavaciones y adecuación de vías internas), 20 horas, 2 veces al año a razón de US$ 20/hora.

4 Los costos están calculados en dólares, una moneda estable y de referencia para la región latinoamericana.
Soluciones

Solución a D.12.1 (cálculo del costo unitario de recuperación del capital [cu] para un periodo de 9 años y un interés del 20% anual):

Con las fórmulas (9-4) y (9-5):

\[Cc = C_i (FRC) = C_i \frac{i}{1 - \frac{1}{1+i}} \]

\[Cc = 19.000 \times \frac{0.20}{1 - 1/(1.2)^9} \]

\[Cc = 19.000 \times 0.248079 = 4.713.5 \text{ US$/año} \]

El rendimiento anual será:

\[R = \frac{313 \text{ días}}{\text{año}} \times 12 \frac{\text{t}}{\text{día}} = 3.756 \frac{\text{t}}{\text{año}} \]

Luego:

\[(Cu) = \frac{\text{monto anual de recuperación de capital}}{\text{toneladas dispuestas por año}} = \frac{4.713.5 \text{ US$/año}}{3.756 \text{ t/año}} = 1.25 \text{ US$/año} \]

Solución a D.12.2. Cálculo del costo unitario de operación y mantenimiento (cuo):

D.12.2.1 Costos de mano de obra, ecuación (9-6)

- Directa = 4 \times 12 \times 90 \times 1.6 = 6.912 \text{ US$/año}
- Indirecta = (1 \times 12 \times 150 \times 1.6) \times 0.2 = 576 \text{ US$/año}

Subtotal de mano de obra = 7.488 \text{ US$/año}

D.12.2.2 Otros gastos operativos (Ch + Cm)

- Materiales y herramientas = 310 \text{ US$/año}
- Alquiler de equipo = (20 \times 20) \times 2 = 800 \text{ US$/año}

Subtotal otros gastos operativos = 1.100 \text{ US$/año}

Total de gastos de operación y mantenimiento (Cao)= 8.588 \text{ US$/año}
Guía para el diseño, construcción y operación de rellenos sanitarios manuales

\[
(Cuo) = \frac{\text{Total de gastos de operación y mantenimiento}}{\text{Toneladas dispuestas/año}} = \frac{8,588 \text{ US$/año}}{3,756 \text{ t/año}} = 2,29 \text{ US$/t}
\]

El costo unitario total será: \(C_{ut} = 1,25 + 2,29 = \text{US$ 3,54 por tonelada.}\)

D.12.3 Cálculo de la tarifa

D.12.3.1 Tarifa con recuperación del capital, más los costos de operación y mantenimiento

Costo de prestar el servicio, cuando se recibe un préstamo y el servicio de la deuda se debe pagar a través de los cobros por tarifas.

\[
\begin{align*}
&\text{Costo unitario de recuperación de capital por } t = 1,25 \text{ US$/t} \\
&\text{Costo unitario de operación y mantenimiento} = 2,29 \text{ US$/t} \\
&\text{Total por recuperar} = 3,54 \text{ US$/t}
\end{align*}
\]

Cantidad de basura recogida por mes = \(12 \frac{t}{\text{día}} \times 26 \frac{\text{días}}{\text{mes}} = 312 \frac{t}{\text{mes}}\)

Costo mensual por disposición final = \(312 \frac{t}{\text{mes}} \times 3,54 \frac{\text{US$}}{t} = 1,104,5 \frac{\text{US$}}{\text{mes}}\)

Ahora, si cada vivienda (usuario) tiene en promedio cinco personas que producen cada una 0,5 kg/día de basura y teniendo en cuenta que se recogen 12 t/día durante 6 días a la semana, la producción diaria de basura es como sigue:

\[
\begin{align*}
\text{Producción diaria de basuras} &= 12,000 \times \frac{\text{kg}}{\text{día}} \times \frac{6}{7} = 10,250 \text{ kg/día}
\end{align*}
\]

Entonces, el número de usuarios es igual a:

\[
\text{N.º de usuarios} = \frac{10,250 \text{ kg/día}}{0,5 \frac{\text{kg}}{\text{hab/día}} \times 5 \frac{\text{hab}}{\text{viv}}} = 4,100 \text{ viviendas (usuarios)}
\]

Luego:

\[
\text{La tarifa mensual por usuario} = \frac{1,104,5 \text{ US$/mes}}{4,100 \text{ usuarios}} = 0,269 \text{ US$/usuario/mes}
\]
D.12.3.2 Tarifa con base en costos de operación y mantenimiento

El costo de prestar el servicio cuando no se incluye el servicio de la deuda en la tarifa (únicamente se consideran los costos de operación y mantenimiento):

Costo unitario de operación y mantenimiento \(= 2.29 \text{ US$/t} \)

Costo mensual por disposición final = \(312 \times \frac{t \text{ t}}{\text{mes}} \times 2.29 \text{ US$} = 714.5 \text{ US$/mes} \)

La tarifa mensual por usuario = \(\frac{714.5 \text{ US$/mes}}{4.100 \text{ usuarios}} = 0.174 \text{ US$/usuario/mes} \)

D.12.4 Asignación presupuestal anual del municipio

La administración municipal anualmente debe asignar del presupuesto una partida equivalente a:

1. Monto anual para pago de la deuda = 4.713 US$año
2. Costos de operación y mantenimiento = 8.588 US$año

Total de asignación anual = 13.301 US$año
Guía para el diseño, construcción y operación de rellenos sanitarios manuales
APÉNDICE E

Cálculo de la capacidad volumétrica del sitio

E.1 Cálculo de áreas

El área de cualquier figura que se haya levantado puede calcularse a partir de:

? Las anotaciones de campo
? El plano dibujado

E.1.1 Áreas deducidas de las notas de campo

? Levantamientos con cinta métrica

En un levantamiento con cinta métrica, el área se subdivide en triángulos cuyos tres lados se miden y el área de cada uno se encuentra por la fórmula (figura E.1):

Área = \[s (s - a) (s - b) (s - c) \] \(\frac{1}{2} \)

Donde:

\[s = \frac{a + b + c}{2} \]

a, b, c = lados del triángulo

Ejemplo 1:

En la figura E.1 se ve un sencillo levantamiento con cinta, compuesto en parte por el triángulo PQR, cuyos lados miden:

PQ = 60,0 m
QR = 104,6 m
RP = 70,0 m
El área del PQR se halla así:

a. En el triángulo PQR:
 \[\begin{align*}
 PQ &= r = 60,0 \text{ m} \\
 QR &= p = 104,6 \text{ m} \\
 RP &= q = 70,0 \text{ m}
 \end{align*} \]

 Perímetro de PQR
 \[= 234,6 \text{ m} \]

 por tanto, semiperímetro
 \[s = 117,3 \text{ m} \]

b.
 \[\begin{align*}
 s - r &= 57,3 \\
 s - p &= 12,7 \\
 s - q &= 47,3
 \end{align*} \]

 Comprobación
 \[= 117,3 = s \]

c. Área del triángulo
 \[PQR = \frac{1}{2} s (s - r)(s - p)(s - q) \]

 \[= \frac{1}{2} \times 117,3 \times 57,3 \times 12,7 \times 47,3 \]

 \[= 2,009,3 \text{ m}^2 \]
Los linderos se hallaron por medio de desvíos desde los alineamientos.

En la figura 5.1 el área entre la línea del levantamiento y el arroyo está formada por una sucesión de triángulos y trapecios, cuyas áreas pueden calcularse separadamente así:

Sobre la línea RQ:

Área del triángulo (1) = \(\frac{1}{2} \times 19 \times 4 = 38,0 \)
Área del trapecio (2) = \(\frac{1}{2} \times (4+8) \times (38 - 19) = 114,0 \)
Área del trapecio (3) = \(\frac{1}{2} \times (8+4,5) \times (55 - 38) = 106,25 \)
Área del rectángulo (4) = \(4,5 \times (72-55) = 76,5 \)
Área del trapecio (5) = \(\frac{1}{2} \times (4,5 + 7) \times (87 - 72) = 86,25 \)
Área del triángulo (6) = \(\frac{1}{2} \times (104,6 - 87) \times 7 = 61,6 \)

El área entre la línea PQ y el camino también está formada por triángulos y trapecios. Sin embargo, en este caso, los desvíos están a intervalos regulares de 10 metros.

Llamando \(Y \) a cada desvío, el área entre dos desvíos consecutivos cualesquiera se calcula así:

Área entre abscisa 20 y abscisa 30 = \(\frac{1}{2}(Y_{20} + Y_{30}) \times 10 \)

Por tanto:

Área total = \(\frac{1}{2}(Y_o + Y_{10}) \times 10 + \frac{1}{2}(Y_{10} + Y_{20}) \times 10 + \frac{1}{2}(Y_{20} + Y_{30}) \times 10 + ... + \frac{1}{2}(Y_{50} + Y_{60}) \times 10 \)

= \(\frac{1}{2} \times 10(Y_o + Y_{10} + Y_{10} + Y_{20} + Y_{20} + Y_{30} + ... + Y_{10} + Y_{30} + Y_{60}) \)

= \(\frac{1}{2} \times 10(Y_o + Y_{60} + 2Y_{10} + 2Y_{20} + 2Y_{30} + 2Y_{40} + 2Y_{50}) \)

= \(10(\frac{Y_o + Y_{60}}{2} + Y_{10} + Y_{20} + Y_{30} + Y_{40} + Y_{50}) \)

Esta es la regla de los trapecios que se enuncia generalmente así:

Área = Ancho de la banda \(x \) (promedio del primero y último desvíos + suma de los demás)
d. En la figura 5.3 el área es como sigue:

\[
Área = 10 \left(\frac{4 + 4}{2} + 4.5 + 5.1 + 6.5 + 6.3 + 5.1 \right) = 315.0 \, \text{m}^2
\]

El área puede hallarse con un poco más de precisión con la regla de Simpson, que puede enunciarse así:

Área = \(\frac{1}{3} \) del ancho de las bandas (primero + último desvíos + doble de la suma de los desvíos impares + cuádruplo de la suma de los desvíos pares).

Nota:
(i) Debe haber un número impar de desvíos.
(ii) Los desvíos deben darse a intervalos regulares.

Usando la regla de Simpson, el área entre la línea PQ y el camino será:

\[
Área = \frac{10}{3} \left[Y_0 + Y_{60} + 2(Y_{20} + Y_{40}) + 4(Y_{10} + Y_{30} + Y_{50}) \right]
\]

\[
= \frac{10}{3} \left[4 + 4 + 2(5,1 + 6,3) + 4(4,5 + 6,5 + 5,1) \right]
\]

\[
= \frac{10}{3} \left[8 + 2(11,4) + 4(16,1) \right]
\]

\[
= 317,3 \, \text{m}^2
\]

e. Por último, se calcula el área entre el alineamiento RP y el bosque. El área se debe calcular mediante la regla de los trapecios, porque hay un número par de desvíos entre R y P a intervalos regulares de 10 metros.

El área entre las abscisas 70 m y 74 m se calcula por separado. El área entre RP y el bosque será:

\[
Área = 10 \left(\frac{3 + 2.5}{2} + 8 + 10 + 9.5 + 9.2 + 7.1 + 4.5 \right)
\]

\[
= 510,5 + 5,0
\]

\[
= 515,5 \, \text{m}^2
\]

Área total del levantamiento = 2,009,3 + 482,6 + 317,3 + 515,5

\[
= 3,324,7 \, \text{m}^2
\]
E.1.2 Cálculo de las áreas a partir del plano

Se dispone de diversos métodos para hallar el área de una figura dada en un plano. Las áreas de las curvas de nivel se pueden medir con un planímetro, gráficamente, por la regla de Simpson o la de los trapecios. A continuación se describen los tres últimos por considerarlos de muy fácil aplicación en estos casos.

Mediante un planímetro

El área de cualquier figura irregular puede encontrarse en un plano utilizando el aparato mecánico para medir áreas conocido como planímetro.

Cálculo del área gráficamente

Se coloca un pliego de papel transparente cuadriculado o milimetrado sobre el plano, se cuentan los cuadrados y se deduce el área.

Por la regla de Simpson o la de los trapecios

Se subdivide el área en una serie de bandas de igual ancho, se miden las ordenadas correspondientes y se usa una u otra regla.

Ejemplo 2:

La figura E.2 muestra un área de forma irregular en un plano a escala 1:500. Calcular el área de la parte superior del relleno por los métodos gráficos y por las reglas de Simpson y de los trapecios.
Solución

a. Método gráfico

El papel transparente cuadriculado superpuesto al plano tiene cuadrados de 5 milímetros de lado y, por lo tanto, cada cuadrado representa un área en el terreno de:

\[(5 \times 500) \text{ mm}^2 = 25 \times 0,25 \text{ m}^2 = 6,25 \text{ m}^2\]

Área = \((6,25 \times \text{número de cuadrados}) \text{ m}^2\)

= \(6,25 \times 89\)

= \(556,25 \text{ m}^2\)

b) Regla de Simpson y de los trapecios

Supongamos la recta marcada xx como la línea de base y cada segunda línea vertical del papel cuadriculado como una ordenada \(Y\) de las que habrá siete en total (\(Y_1\) a \(Y_7\)). Las longitudes de estas ordenadas, leídas a escala, son de 16 m, 18,3 m, 20 m, 22,5 m, 23,8 m, 15,3 m y 0 m, y su separación es de 5 m a lo largo de la línea de base.

Por la regla de Simpson:

\[\text{Área} = \frac{5}{3}[16 + 0 + 2(20 + 23,8) + 4(18,3 + 22,5 + 15,3)]\]

\[= 546,67 \text{ m}^2\]

Por la regla de los trapecios:

\[\text{Área} = 5\left(\frac{16 + 0}{2}\right) + 18,3 + 20 + 22,5 + 23,8 + 15,3\]
APÉNDICE F

Problemas ocasionados por el manejo inapropiado de los residuos sólidos

Reportes de prensa

En ocasiones, se destacan en los periódicos locales y en la prensa internacional algunas enfermedades o epidemias con titulares que sorprenden y causan desconcierto y olvidamos que las condiciones de insalubridad son un caldo de cultivo de los vectores que las ocasionan. Veamos algunos recortes de prensa:

? *El Heraldo* de México. “Acuerda la OPS intensificar la lucha contra el hantavirus”. Washington (Reuter). La Organización Panamericana de la Salud resolvió intensificar la lucha contra el hantavirus (enfermedad que no tiene cura), una enfermedad transmitida por ratones que ha tenido brotes en Argentina, Chile y Paraguay [...]. “Estamos tremendamente preocupados”, dijo Alex Figueroa, ministro chileno de Salud, donde ha habido 27 personas infectadas por el virus; 14 han muerto.

Desde su aparición en Sudamérica en 1992, se han registrado 122 casos del síndrome pulmonar hantavirus en Argentina, con 48 muertes y 35 casos en Paraguay con 13 muertes, dijo la OPS. Brasil, Bolivia y Uruguay han tenido casos esporádicos. El hantavirus se transporta en la orina, la saliva y el excremento de los roedores y se transmite a los seres humanos por el aire, generalmente en partículas de polvo. Sábado, 27 de setiembre de 1997.

El último brote de extrañas enfermedades virales de origen desconocido apareció en Nicaragua, donde un mal producido por un virus aún no identificado (altamente transmisible), ha cobrado hasta hoy la vida de por lo menos 12 personas. La enfermedad presenta síntomas parecidos al dengue hemorrágico, ya que provoca fiebres elevadas, dolores de cabeza y de músculos y articulaciones, así como una rápida evolución de hemorragias [se presume que esta enfermedad es transmitida por roedores].

También eran las ratas las portadoras hace tres décadas en Bolivia del mortal virus *Machupo*, que cobró aproximadamente unas 100 víctimas.

“Extraño brote en Perú”. En Perú, 137 personas de remota población al norte del país tuvieron que ser atendidas esta semana, afectadas por un extraño brote epidémico. El director de la Unidad Territorial de Salud de la provincia de Bagua informó que la enfermedad, con expresiones de diarrea, fue localizada en el caserío de Tolopampa. “Se trata de un brote epidémico raro. Tenemos la hipótesis de que podría tratarse de una virosis generalizada [...] en segundo lugar pensamos en un cuadro de paratifoidea”, explicó el médico.

El mes pasado, Venezuela y Colombia fueron escenario de la aparición de otra extraña enfermedad hemorrágica y de altas fiebres que resultó ser encefalitis equina, transmitida por el llamado “supermosquito”, y que causó la muerte de decenas de personas, la mayoría niños. Mientras tanto, el mosquito *Aedes aegypti* sigue contagiando de dengue a miles de personas en los países cercanos al Ecuador.

Expertos de la OPS han relacionado el incremento de males desconocidos con la invasión de áreas selváticas, la caída de los niveles de salubridad y del descenso en la inversión de salud en la región. 29 de octubre de 1995.

“El Heraldo” de México. “Confirman dos casos de encefalitis en Florida”. Melbourne (Reuter). Dos casos de encefalitis St. Louis en humanos se han confirmado en el estado de la Florida, anunciaron autoridades de Salud de Estados Unidos [...]. Las autoridades de salud del estado, que obtiene una gran cantidad de sus ingresos del turismo, impusieron hace dos meses una alerta sanitaria ante la amenaza de un brote de encefalitis similar en 1990. Entonces, se registraron 226 personas infectadas, de las cuales murieron 11. La alerta se produjo cuando se descubrió que varios animales expuestos a los mosquitos tenían la enfermedad [...]. Los síntomas incluyen fiebre, dolor de cabeza, tensión muscular en el cuello, mareos, desorientación y en los peores casos la muerte. Usualmente el virus aparece primero en aves silvestres y es transmitido a los humanos por picaduras de mosquitos. Sábado, 27 de setiembre de 1997.

“El Tiempo”, Santafé de Bogotá, Colombia. Geodatos. “¿Qué es la peste negra?”. Las plagas, que durante el último milenio han cobrado más vidas que las gue-
rras, continúan provocando temor en el mundo entero. Millares de personas huyeron de Surat, en la India, cuando un brote de plaga neumónica afectó esa ciudad portuaria en setiembre pasado. La plaga neumónica, una infección pulmonar altamente contagiosa, puede matar a una persona en el lapso de tres días. La peste bubónica, una plaga más lenta y menos mortífera, afecta el sistema linfático del cuerpo. Ambas plagas devastaron Europa durante el siglo catorce de nuestra era.

La peste llegó al Viejo Mundo en 1347. En apenas cinco años causó la muerte a 25 millones de personas. Esa fue la época de la peste negra, designada así por el oscuro color que adquiría la piel de las víctimas. Proveniente de Asia, la peste negra mató a 50 millones de europeos hasta 1771 [...] Causada por la bacteria Yersina pestis, la plaga es frecuentemente diseminada de ratas a seres humanos a través de las pulgas.

En Estados Unidos hay un promedio de 15 casos por año, la mayor parte en el suroeste, entre aborígenes. Pero al menos 50 personas murieron en la última epidemia registrada en la India. [...] Originada en Yunán, China, en 1855, la plaga había llegado a Hong Kong en 1894. En el lapso de seis años la plaga se diseminó por todo el mundo a través de buques mercantes. National Geographic Society, 1994.

? El Colombiano de Medellín, Colombia. “La rebelión de las ratas”. Invasión silenciosa en Santafé de Bogotá. Una pequeña bestia de ojos parduicos, pelaje grueso y poderosos dientes está haciendo de las suyas en Santafé de Bogotá. Las ratas invaden la ciudad, especialmente los sitios donde los servicios de recolección de basuras no funcionan como debería ser [...].

La proliferación de ratas en algunas zonas de la ciudad se debe principalmente a que las basuras no se recogen a tiempo, y cuando se recogen, los vecinos no colaboran y a los pocos minutos las calles nuevamente están llenas de bolsas con desperdicios. A esto se agrega el que carreterilleros y recolectores esporádicos de basuras convirtieron las esquinas y los lotes baldíos de estos barrios en botaderos, ante la impotencia de los residentes. [...] Situaciones como que las ratas ataquen a los recién nacidos y los desfiguren, son más comunes de lo que muchos creen. Anualmente se reportan de 60 a 100 ataques a seres humanos sólo en el Distrito Capital. Aun así, el problema continúa y crece diariamente debido a la poca colaboración de la ciudadanía, que no comprende que el desaseo y el mal manejo de la basura son tal vez las principales causas de la proliferación de roedores de gran tamaño en la ciudad. Jueves, 13 de abril de 1995.